Home > Publications Database > A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. > print |
001 | 154308 | ||
005 | 20240223115102.0 | ||
024 | 7 | _ | |a 10.1016/j.celrep.2020.108175 |2 doi |
024 | 7 | _ | |a pmid:32946807 |2 pmid |
024 | 7 | _ | |a pmc:PMC7470764 |2 pmc |
024 | 7 | _ | |a 2211-1247 |2 ISSN |
024 | 7 | _ | |a 2639-1856 |2 ISSN |
024 | 7 | _ | |a altmetric:89391537 |2 altmetric |
037 | _ | _ | |a DZNE-2021-00162 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Singh, Manvendra |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. |
260 | _ | _ | |a [New York, NY] |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1708605517_31172 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a ISSN 2211-1247 not unique: **3 hits**. |
520 | _ | _ | |a To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell transcriptomics across various healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Intestinal goblet cells, enterocytes, and kidney proximal tubule cells appear highly permissive to SARS-CoV-2, consistent with clinical data. Our analysis also predicts non-canonical entry paths for lung and brain infections. Spermatogonial cells and prostate endocrine cells also appear to be permissive to SARS-CoV-2 infection, suggesting male-specific vulnerabilities. Both pro- and anti-viral factors are highly expressed within the nasal epithelium, with potential age-dependent variation, predicting an important battleground for coronavirus infection. Our analysis also suggests that early embryonic and placental development are at moderate risk of infection. Lastly, SCARF expression appears broadly conserved across a subset of primate organs examined. Our study establishes a resource for investigations of coronavirus biology and pathology. |
536 | _ | _ | |a 342 - Disease Mechanisms and Model Systems (POF3-342) |0 G:(DE-HGF)POF3-342 |c POF3-342 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a COVID-19 |2 Other |
650 | _ | 7 | |a SARS-CoV-2 |2 Other |
650 | _ | 7 | |a coronaviruses |2 Other |
650 | _ | 7 | |a restriction factors |2 Other |
650 | _ | 7 | |a scRNA-seq |2 Other |
650 | _ | 7 | |a viral receptors |2 Other |
650 | _ | 7 | |a Receptors, Virus |2 NLM Chemicals |
650 | _ | 7 | |a Peptidyl-Dipeptidase A |0 EC 3.4.15.1 |2 NLM Chemicals |
650 | _ | 7 | |a ACE2 protein, human |0 EC 3.4.17.23 |2 NLM Chemicals |
650 | _ | 7 | |a Angiotensin-Converting Enzyme 2 |0 EC 3.4.17.23 |2 NLM Chemicals |
650 | _ | 7 | |a Serine Endopeptidases |0 EC 3.4.21.- |2 NLM Chemicals |
650 | _ | 7 | |a TMPRSS2 protein, human |0 EC 3.4.21.- |2 NLM Chemicals |
650 | _ | 2 | |a A549 Cells |2 MeSH |
650 | _ | 2 | |a Angiotensin-Converting Enzyme 2 |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Betacoronavirus: growth & development |2 MeSH |
650 | _ | 2 | |a COVID-19 |2 MeSH |
650 | _ | 2 | |a Cell Line |2 MeSH |
650 | _ | 2 | |a Chlorocebus aethiops |2 MeSH |
650 | _ | 2 | |a Coronavirus Infections: pathology |2 MeSH |
650 | _ | 2 | |a Enterocytes: metabolism |2 MeSH |
650 | _ | 2 | |a Gene Expression Profiling |2 MeSH |
650 | _ | 2 | |a Goblet Cells: metabolism |2 MeSH |
650 | _ | 2 | |a HEK293 Cells |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Kidney Tubules, Proximal: cytology |2 MeSH |
650 | _ | 2 | |a Kidney Tubules, Proximal: metabolism |2 MeSH |
650 | _ | 2 | |a Nasal Mucosa: metabolism |2 MeSH |
650 | _ | 2 | |a Nasal Mucosa: virology |2 MeSH |
650 | _ | 2 | |a Pandemics |2 MeSH |
650 | _ | 2 | |a Peptidyl-Dipeptidase A: genetics |2 MeSH |
650 | _ | 2 | |a Peptidyl-Dipeptidase A: metabolism |2 MeSH |
650 | _ | 2 | |a Pneumonia, Viral: pathology |2 MeSH |
650 | _ | 2 | |a Receptors, Virus: genetics |2 MeSH |
650 | _ | 2 | |a SARS-CoV-2 |2 MeSH |
650 | _ | 2 | |a Serine Endopeptidases: genetics |2 MeSH |
650 | _ | 2 | |a Serine Endopeptidases: metabolism |2 MeSH |
650 | _ | 2 | |a Single-Cell Analysis |2 MeSH |
650 | _ | 2 | |a Vero Cells |2 MeSH |
650 | _ | 2 | |a Viral Tropism: genetics |2 MeSH |
650 | _ | 2 | |a Virus Internalization |2 MeSH |
700 | 1 | _ | |a Bansal, Vikas |0 P:(DE-2719)2812055 |b 1 |u dzne |
700 | 1 | _ | |a Feschotte, Cédric |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |a 10.1016/j.celrep.2020.108175 |g Vol. 32, no. 12, p. 108175 - |0 PERI:(DE-600)2649101-1 |n 12 |p 108175 |t Cell reports |v 32 |y 2020 |x 2211-1247 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/154308/files/DZNE-2021-00162.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/154308/files/DZNE-2021-00162.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:154308 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2812055 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-342 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Disease Mechanisms and Model Systems |x 0 |
913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-26T13:08:57Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-26T13:08:57Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-01-26T13:08:57Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELL REP : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 |
920 | 1 | _ | |0 I:(DE-2719)1410003 |k AG Bonn 1 |l Computational analysis of biological networks |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1410003 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|