001     154308
005     20240223115102.0
024 7 _ |a 10.1016/j.celrep.2020.108175
|2 doi
024 7 _ |a pmid:32946807
|2 pmid
024 7 _ |a pmc:PMC7470764
|2 pmc
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
024 7 _ |a altmetric:89391537
|2 altmetric
037 _ _ |a DZNE-2021-00162
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Singh, Manvendra
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors.
260 _ _ |a [New York, NY]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708605517_31172
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 2211-1247 not unique: **3 hits**.
520 _ _ |a To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell transcriptomics across various healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Intestinal goblet cells, enterocytes, and kidney proximal tubule cells appear highly permissive to SARS-CoV-2, consistent with clinical data. Our analysis also predicts non-canonical entry paths for lung and brain infections. Spermatogonial cells and prostate endocrine cells also appear to be permissive to SARS-CoV-2 infection, suggesting male-specific vulnerabilities. Both pro- and anti-viral factors are highly expressed within the nasal epithelium, with potential age-dependent variation, predicting an important battleground for coronavirus infection. Our analysis also suggests that early embryonic and placental development are at moderate risk of infection. Lastly, SCARF expression appears broadly conserved across a subset of primate organs examined. Our study establishes a resource for investigations of coronavirus biology and pathology.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a COVID-19
|2 Other
650 _ 7 |a SARS-CoV-2
|2 Other
650 _ 7 |a coronaviruses
|2 Other
650 _ 7 |a restriction factors
|2 Other
650 _ 7 |a scRNA-seq
|2 Other
650 _ 7 |a viral receptors
|2 Other
650 _ 7 |a Receptors, Virus
|2 NLM Chemicals
650 _ 7 |a Peptidyl-Dipeptidase A
|0 EC 3.4.15.1
|2 NLM Chemicals
650 _ 7 |a ACE2 protein, human
|0 EC 3.4.17.23
|2 NLM Chemicals
650 _ 7 |a Angiotensin-Converting Enzyme 2
|0 EC 3.4.17.23
|2 NLM Chemicals
650 _ 7 |a Serine Endopeptidases
|0 EC 3.4.21.-
|2 NLM Chemicals
650 _ 7 |a TMPRSS2 protein, human
|0 EC 3.4.21.-
|2 NLM Chemicals
650 _ 2 |a A549 Cells
|2 MeSH
650 _ 2 |a Angiotensin-Converting Enzyme 2
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Betacoronavirus: growth & development
|2 MeSH
650 _ 2 |a COVID-19
|2 MeSH
650 _ 2 |a Cell Line
|2 MeSH
650 _ 2 |a Chlorocebus aethiops
|2 MeSH
650 _ 2 |a Coronavirus Infections: pathology
|2 MeSH
650 _ 2 |a Enterocytes: metabolism
|2 MeSH
650 _ 2 |a Gene Expression Profiling
|2 MeSH
650 _ 2 |a Goblet Cells: metabolism
|2 MeSH
650 _ 2 |a HEK293 Cells
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Kidney Tubules, Proximal: cytology
|2 MeSH
650 _ 2 |a Kidney Tubules, Proximal: metabolism
|2 MeSH
650 _ 2 |a Nasal Mucosa: metabolism
|2 MeSH
650 _ 2 |a Nasal Mucosa: virology
|2 MeSH
650 _ 2 |a Pandemics
|2 MeSH
650 _ 2 |a Peptidyl-Dipeptidase A: genetics
|2 MeSH
650 _ 2 |a Peptidyl-Dipeptidase A: metabolism
|2 MeSH
650 _ 2 |a Pneumonia, Viral: pathology
|2 MeSH
650 _ 2 |a Receptors, Virus: genetics
|2 MeSH
650 _ 2 |a SARS-CoV-2
|2 MeSH
650 _ 2 |a Serine Endopeptidases: genetics
|2 MeSH
650 _ 2 |a Serine Endopeptidases: metabolism
|2 MeSH
650 _ 2 |a Single-Cell Analysis
|2 MeSH
650 _ 2 |a Vero Cells
|2 MeSH
650 _ 2 |a Viral Tropism: genetics
|2 MeSH
650 _ 2 |a Virus Internalization
|2 MeSH
700 1 _ |a Bansal, Vikas
|0 P:(DE-2719)2812055
|b 1
|u dzne
700 1 _ |a Feschotte, Cédric
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.celrep.2020.108175
|g Vol. 32, no. 12, p. 108175 -
|0 PERI:(DE-600)2649101-1
|n 12
|p 108175
|t Cell reports
|v 32
|y 2020
|x 2211-1247
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/154308/files/DZNE-2021-00162.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/154308/files/DZNE-2021-00162.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:154308
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812055
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:08:57Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:08:57Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
920 1 _ |0 I:(DE-2719)1410003
|k AG Bonn 1
|l Computational analysis of biological networks
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410003
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21