000154352 001__ 154352
000154352 005__ 20250717161142.0
000154352 0247_ $$2doi$$a10.1523/JNEUROSCI.2275-19.2020
000154352 0247_ $$2pmid$$apmid:32817247
000154352 0247_ $$2pmc$$apmc:PMC7480236
000154352 0247_ $$2ISSN$$a0270-6474
000154352 0247_ $$2ISSN$$a1529-2401
000154352 0247_ $$2altmetric$$aaltmetric:88659717
000154352 037__ $$aDZNE-2021-00205
000154352 041__ $$aEnglish
000154352 082__ $$a610
000154352 1001_ $$0P:(DE-2719)2811776$$aMeier, Kolja$$b0$$eFirst author$$udzne
000154352 245__ $$aDentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice.
000154352 260__ $$aWashington, DC$$bSoc.69657$$c2020
000154352 3367_ $$2DRIVER$$aarticle
000154352 3367_ $$2DataCite$$aOutput Types/Journal article
000154352 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752761450_26599
000154352 3367_ $$2BibTeX$$aARTICLE
000154352 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154352 3367_ $$00$$2EndNote$$aJournal Article
000154352 500__ $$aISSN 1529-2401 not unique: **3 hits**.
000154352 520__ $$aThe hippocampus plays an essential role in learning. Each of the three major hippocampal subfields, dentate gyrus (DG), CA3, and CA1, has a unique function in memory formation and consolidation, and also exhibit distinct local field potential (LFP) signatures during memory consolidation processes in non-rapid eye movement (NREM) sleep. The classic LFP events of the CA1 region, sharp-wave ripples (SWRs), are induced by CA3 activity and considered to be an electrophysiological biomarker for episodic memory. In LFP recordings along the dorsal CA1-DG axis from sleeping male mice, we detected and classified two types of LFP events in the DG: high-amplitude dentate spikes (DSs), and a novel event type whose current source density (CSD) signature resembled that seen during CA1 SWR, but which, most often, occurred independently of them. Because we hypothesize that this event type is similarly induced by CA3 activity, we refer to it as dentate sharp wave (DSW). We show that both DSWs and DSs differentially modulate the electrophysiological properties of SWR and multiunit activity (MUA). Following two hippocampus-dependent memory tasks, DSW occurrence rates, ripple frequencies, and ripple and sharp wave (SW) amplitudes were increased in both, while SWR occurrence rates in dorsal CA1 increased only after the spatial task. Our results suggest that DSWs, like SWRs, are induced by CA3 activity and that DSWs complement SWRs as a hippocampal LFP biomarker of memory consolidation.SIGNIFICANCE STATEMENT Awake experience is consolidated into long-term memories during sleep. Memory consolidation crucially depends on sharp-wave ripples (SWRs), which are local field potential (LFP) patterns in hippocampal CA1 that increase after learning. The dentate gyrus (DG) plays a central role in the process of memory formation, prompting us to cluster sharp waves (SWs) in the DG [dentate SWs (DSWs)] during sleep. We show that both DSW coupling to CA1 SWRs, and their occurrence rates, robustly increase after learning trials. Our results suggest that the DG is directly affected by memory consolidation processes. DSWs may thus complement SWRs as a sensitive electrophysiological biomarker of memory consolidation in mice.
000154352 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000154352 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000154352 650_7 $$2Other$$adentate gyrus
000154352 650_7 $$2Other$$adentate sharp wave
000154352 650_7 $$2Other$$adentate spike
000154352 650_7 $$2Other$$ahippocampus
000154352 650_7 $$2Other$$asharp-wave ripple
000154352 650_2 $$2MeSH$$aAnimals
000154352 650_2 $$2MeSH$$aBrain Waves
000154352 650_2 $$2MeSH$$aDentate Gyrus: physiology
000154352 650_2 $$2MeSH$$aMale
000154352 650_2 $$2MeSH$$aMemory
000154352 650_2 $$2MeSH$$aMice
000154352 650_2 $$2MeSH$$aMice, Inbred C57BL
000154352 650_2 $$2MeSH$$aSleep, REM
000154352 650_2 $$2MeSH$$aWakefulness
000154352 7001_ $$0P:(DE-2719)2811002$$aMerseburg, Andrea$$b1$$udzne
000154352 7001_ $$0P:(DE-2719)2810976$$aIsbrandt, Dirk$$b2$$eCorresponding author$$udzne
000154352 7001_ $$0P:(DE-2719)2811573$$aMarguet, Stephan Lawrence$$b3$$udzne
000154352 7001_ $$0P:(DE-HGF)0$$aMorellini, Fabio$$b4
000154352 77318 $$2Crossref$$3journal-article$$a10.1523/jneurosci.2275-19.2020$$bSociety for Neuroscience$$d2020-08-19$$n37$$p7105-7118$$tThe Journal of Neuroscience$$v40$$x0270-6474$$y2020
000154352 773__ $$0PERI:(DE-600)1475274-8$$a10.1523/JNEUROSCI.2275-19.2020$$gVol. 40, no. 37, p. 7105 - 7118$$n37$$p7105-7118$$tThe journal of neuroscience$$v40$$x0270-6474$$y2020
000154352 8564_ $$uhttps://pub.dzne.de/record/154352/files/DZNE-2021-00205_Restricted.pdf
000154352 8564_ $$uhttps://pub.dzne.de/record/154352/files/DZNE-2021-00205_Restricted.pdf?subformat=pdfa$$xpdfa
000154352 909CO $$ooai:pub.dzne.de:154352$$pVDB
000154352 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811776$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000154352 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811002$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000154352 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810976$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000154352 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811573$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000154352 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000154352 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000154352 9141_ $$y2020
000154352 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000154352 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000154352 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000154352 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROSCI : 2021$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-13
000154352 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROSCI : 2021$$d2022-11-13
000154352 9201_ $$0I:(DE-2719)1011003$$kAG Isbrandt$$lExperimental Neurophysiology$$x0
000154352 980__ $$ajournal
000154352 980__ $$aVDB
000154352 980__ $$aI:(DE-2719)1011003
000154352 980__ $$aUNRESTRICTED