001     154666
005     20240223115102.0
024 7 _ |a 10.1016/j.xcrm.2020.100159
|2 doi
024 7 _ |a pmid:33377130
|2 pmid
024 7 _ |a pmc:PMC7762779
|2 pmc
024 7 _ |a altmetric:96504126
|2 altmetric
037 _ _ |a DZNE-2021-00295
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kugler, Christof
|0 P:(DE-2719)2811853
|b 0
|e First author
245 _ _ |a Epothilones Improve Axonal Growth and Motor Outcomes after Stroke in the Adult Mammalian CNS.
260 _ _ |a Maryland Heights, MO
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708604858_31172
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Stroke leads to the degeneration of short-range and long-range axonal connections emanating from peri-infarct tissue, but it also induces novel axonal projections. However, this regeneration is hampered by growth-inhibitory properties of peri-infarct tissue and fibrotic scarring. Here, we tested the effects of epothilone B and epothilone D, FDA-approved microtubule-stabilizing drugs that are powerful modulators of axonal growth and scar formation, on neuroplasticity and motor outcomes in a photothrombotic mouse model of cortical stroke. We find that both drugs, when administered systemically 1 and 15 days after stroke, augment novel peri-infarct projections connecting the peri-infarct motor cortex with neighboring areas. Both drugs also increase the magnitude of long-range motor projections into the brainstem and reduce peri-infarct fibrotic scarring. Finally, epothilone treatment induces an improvement in skilled forelimb motor function. Thus, pharmacological microtubule stabilization represents a promising target for therapeutic intervention with a wide time window to ameliorate structural and functional sequelae after stroke.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a axon regeneration
|2 Other
650 _ 7 |a fibrotic scar
|2 Other
650 _ 7 |a ischemia
|2 Other
650 _ 7 |a neuroplasticity
|2 Other
650 _ 7 |a stroke
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Axons: drug effects
|2 MeSH
650 _ 2 |a Central Nervous System: drug effects
|2 MeSH
650 _ 2 |a Central Nervous System: physiopathology
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Epothilones: pharmacology
|2 MeSH
650 _ 2 |a Mammals
|2 MeSH
650 _ 2 |a Motor Cortex: drug effects
|2 MeSH
650 _ 2 |a Neuronal Plasticity: drug effects
|2 MeSH
650 _ 2 |a Neurons: drug effects
|2 MeSH
650 _ 2 |a Recovery of Function: drug effects
|2 MeSH
650 _ 2 |a Recovery of Function: physiology
|2 MeSH
650 _ 2 |a Stroke: drug therapy
|2 MeSH
693 _ _ |0 EXP:(DE-2719)LMF-20190308
|5 EXP:(DE-2719)LMF-20190308
|e Light Microscope Facility (CRFS-LMF) / Bonn
|x 0
693 _ _ |0 EXP:(DE-2719)IDAF-20190308
|5 EXP:(DE-2719)IDAF-20190308
|e Image and Data Analysis Facility (CRFS-IDAF) / Bonn
|x 1
700 1 _ |a Thielscher, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tambe, Bertrand A
|0 P:(DE-2719)2812512
|b 2
700 1 _ |a Schwarz, Martin K
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Halle, Annett
|0 P:(DE-2719)2812038
|b 4
700 1 _ |a Bradke, Frank
|0 P:(DE-2719)2810270
|b 5
700 1 _ |a Petzold, Gabor C
|0 P:(DE-2719)2810273
|b 6
|e Last author
773 _ _ |a 10.1016/j.xcrm.2020.100159
|g Vol. 1, no. 9, p. 100159 -
|0 PERI:(DE-600)3019420-9
|n 9
|p 100159
|t Cell reports / Medicine
|v 1
|y 2020
|x 2666-3791
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S2666379120302068
856 4 _ |u https://pub.dzne.de/record/154666/files/DZNE-2021-00295.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/154666/files/DZNE-2021-00295.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:154666
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811853
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812512
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812038
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810270
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810273
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 2 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b CELL REP MED : 2021
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP MED : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-12T12:42:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-12T12:42:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-12T12:42:40Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
920 _ _ |l yes
920 1 _ |0 I:(DE-2719)1013020
|k AG Petzold ; AG Petzold
|l Vascular Neurology
|x 0
920 1 _ |0 I:(DE-2719)1013034
|k AG Halle
|l Microglia and Neuroinflammation
|x 1
920 1 _ |0 I:(DE-2719)1013002
|k AG Bradke
|l Axon Growth and Regeneration
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013020
980 _ _ |a I:(DE-2719)1013034
980 _ _ |a I:(DE-2719)1013002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21