Home > Publications Database > Epothilones Improve Axonal Growth and Motor Outcomes after Stroke in the Adult Mammalian CNS. > print |
001 | 154666 | ||
005 | 20240223115102.0 | ||
024 | 7 | _ | |a 10.1016/j.xcrm.2020.100159 |2 doi |
024 | 7 | _ | |a pmid:33377130 |2 pmid |
024 | 7 | _ | |a pmc:PMC7762779 |2 pmc |
024 | 7 | _ | |a altmetric:96504126 |2 altmetric |
037 | _ | _ | |a DZNE-2021-00295 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kugler, Christof |0 P:(DE-2719)2811853 |b 0 |e First author |
245 | _ | _ | |a Epothilones Improve Axonal Growth and Motor Outcomes after Stroke in the Adult Mammalian CNS. |
260 | _ | _ | |a Maryland Heights, MO |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1708604858_31172 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Stroke leads to the degeneration of short-range and long-range axonal connections emanating from peri-infarct tissue, but it also induces novel axonal projections. However, this regeneration is hampered by growth-inhibitory properties of peri-infarct tissue and fibrotic scarring. Here, we tested the effects of epothilone B and epothilone D, FDA-approved microtubule-stabilizing drugs that are powerful modulators of axonal growth and scar formation, on neuroplasticity and motor outcomes in a photothrombotic mouse model of cortical stroke. We find that both drugs, when administered systemically 1 and 15 days after stroke, augment novel peri-infarct projections connecting the peri-infarct motor cortex with neighboring areas. Both drugs also increase the magnitude of long-range motor projections into the brainstem and reduce peri-infarct fibrotic scarring. Finally, epothilone treatment induces an improvement in skilled forelimb motor function. Thus, pharmacological microtubule stabilization represents a promising target for therapeutic intervention with a wide time window to ameliorate structural and functional sequelae after stroke. |
536 | _ | _ | |a 344 - Clinical and Health Care Research (POF3-344) |0 G:(DE-HGF)POF3-344 |c POF3-344 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a axon regeneration |2 Other |
650 | _ | 7 | |a fibrotic scar |2 Other |
650 | _ | 7 | |a ischemia |2 Other |
650 | _ | 7 | |a neuroplasticity |2 Other |
650 | _ | 7 | |a stroke |2 Other |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Axons: drug effects |2 MeSH |
650 | _ | 2 | |a Central Nervous System: drug effects |2 MeSH |
650 | _ | 2 | |a Central Nervous System: physiopathology |2 MeSH |
650 | _ | 2 | |a Disease Models, Animal |2 MeSH |
650 | _ | 2 | |a Epothilones: pharmacology |2 MeSH |
650 | _ | 2 | |a Mammals |2 MeSH |
650 | _ | 2 | |a Motor Cortex: drug effects |2 MeSH |
650 | _ | 2 | |a Neuronal Plasticity: drug effects |2 MeSH |
650 | _ | 2 | |a Neurons: drug effects |2 MeSH |
650 | _ | 2 | |a Recovery of Function: drug effects |2 MeSH |
650 | _ | 2 | |a Recovery of Function: physiology |2 MeSH |
650 | _ | 2 | |a Stroke: drug therapy |2 MeSH |
693 | _ | _ | |0 EXP:(DE-2719)LMF-20190308 |5 EXP:(DE-2719)LMF-20190308 |e Light Microscope Facility (CRFS-LMF) / Bonn |x 0 |
693 | _ | _ | |0 EXP:(DE-2719)IDAF-20190308 |5 EXP:(DE-2719)IDAF-20190308 |e Image and Data Analysis Facility (CRFS-IDAF) / Bonn |x 1 |
700 | 1 | _ | |a Thielscher, Christian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Tambe, Bertrand A |0 P:(DE-2719)2812512 |b 2 |
700 | 1 | _ | |a Schwarz, Martin K |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Halle, Annett |0 P:(DE-2719)2812038 |b 4 |
700 | 1 | _ | |a Bradke, Frank |0 P:(DE-2719)2810270 |b 5 |
700 | 1 | _ | |a Petzold, Gabor C |0 P:(DE-2719)2810273 |b 6 |e Last author |
773 | _ | _ | |a 10.1016/j.xcrm.2020.100159 |g Vol. 1, no. 9, p. 100159 - |0 PERI:(DE-600)3019420-9 |n 9 |p 100159 |t Cell reports / Medicine |v 1 |y 2020 |x 2666-3791 |
856 | 4 | _ | |u https://www.sciencedirect.com/science/article/pii/S2666379120302068 |
856 | 4 | _ | |u https://pub.dzne.de/record/154666/files/DZNE-2021-00295.pdf |y OpenAccess |
856 | 4 | _ | |u https://pub.dzne.de/record/154666/files/DZNE-2021-00295.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:154666 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)2811853 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)2812512 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)2812038 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2810270 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2810273 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-344 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
913 | 2 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-22 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b CELL REP MED : 2021 |d 2022-11-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP MED : 2021 |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-12T12:42:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-12T12:42:40Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-22 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-02-12T12:42:40Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-22 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-2719)1013020 |k AG Petzold ; AG Petzold |l Vascular Neurology |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1013034 |k AG Halle |l Microglia and Neuroinflammation |x 1 |
920 | 1 | _ | |0 I:(DE-2719)1013002 |k AG Bradke |l Axon Growth and Regeneration |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1013020 |
980 | _ | _ | |a I:(DE-2719)1013034 |
980 | _ | _ | |a I:(DE-2719)1013002 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|