000155166 001__ 155166
000155166 005__ 20240410115726.0
000155166 0247_ $$2pmid$$apmid:33903596
000155166 0247_ $$2doi$$a10.1038/s41467-021-22421-8
000155166 0247_ $$2altmetric$$aaltmetric:104721552
000155166 0247_ $$2pmid$$a33903596
000155166 0247_ $$2pmc$$apmc:PMC8076296
000155166 037__ $$aDZNE-2021-00487
000155166 082__ $$a500
000155166 1001_ $$0P:(DE-2719)9001892$$aTaylor, James$$b0$$udzne
000155166 245__ $$aSingle cell plasticity and population coding stability in auditory thalamus upon associative learning
000155166 260__ $$a[London]$$bNature Publishing Group UK$$c2021
000155166 3367_ $$2DRIVER$$aarticle
000155166 3367_ $$2DataCite$$aOutput Types/Journal article
000155166 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712661638_12207
000155166 3367_ $$2BibTeX$$aARTICLE
000155166 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155166 3367_ $$00$$2EndNote$$aJournal Article
000155166 520__ $$aCortical and limbic brain areas are regarded as centres for learning. However, how thalamic sensory relays participate in plasticity upon associative learning, yet support stable long-term sensory coding remains unknown. Using a miniature microscope imaging approach, we monitor the activity of populations of auditory thalamus (medial geniculate body) neurons in freely moving mice upon fear conditioning. We find that single cells exhibit mixed selectivity and heterogeneous plasticity patterns to auditory and aversive stimuli upon learning, which is conserved in amygdala-projecting medial geniculate body neurons. Activity in auditory thalamus to amygdala-projecting neurons stabilizes single cell plasticity in the total medial geniculate body population and is necessary for fear memory consolidation. In contrast to individual cells, population level encoding of auditory stimuli remained stable across days. Our data identifies auditory thalamus as a site for complex neuronal plasticity in fear learning upstream of the amygdala that is in an ideal position to drive plasticity in cortical and limbic brain areas. These findings suggest that medial geniculate body’s role goes beyond a sole relay function by balancing experience-dependent, diverse single cell plasticity with consistent ensemble level representations of the sensory environment to support stable auditory perception with minimal affective bias.
000155166 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000155166 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000155166 650_2 $$2MeSH$$aAcoustic Stimulation
000155166 650_2 $$2MeSH$$aAmygdala: cytology
000155166 650_2 $$2MeSH$$aAmygdala: physiology
000155166 650_2 $$2MeSH$$aAnimals
000155166 650_2 $$2MeSH$$aAuditory Pathways: physiology
000155166 650_2 $$2MeSH$$aAuditory Perception: physiology
000155166 650_2 $$2MeSH$$aCell Plasticity: physiology
000155166 650_2 $$2MeSH$$aConditioning, Classical: physiology
000155166 650_2 $$2MeSH$$aFear: physiology
000155166 650_2 $$2MeSH$$aGeniculate Bodies: cytology
000155166 650_2 $$2MeSH$$aGeniculate Bodies: physiology
000155166 650_2 $$2MeSH$$aLearning: physiology
000155166 650_2 $$2MeSH$$aMice, Inbred C57BL
000155166 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000155166 650_2 $$2MeSH$$aNeurons: physiology
000155166 650_2 $$2MeSH$$aThalamus: cytology
000155166 650_2 $$2MeSH$$aThalamus: physiology
000155166 7001_ $$0P:(DE-2719)9001582$$aHasegawa, Masashi$$b1$$udzne
000155166 7001_ $$0P:(DE-2719)9001347$$aBenoit, Chloé Maëlle$$b2
000155166 7001_ $$aFreire, Joana Amorim$$b3
000155166 7001_ $$aTheodore, Marine$$b4
000155166 7001_ $$0P:(DE-HGF)0$$aGanea, Dan Alin$$b5
000155166 7001_ $$aInnocenti, Sabrina Milena$$b6
000155166 7001_ $$aLu, Tingjia$$b7
000155166 7001_ $$0P:(DE-2719)9001219$$aGründemann, Jan$$b8$$eLast author$$udzne
000155166 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-021-22421-8$$gVol. 12, no. 1, p. 2438$$n1$$p2438$$tNature Communications$$v12$$x2041-1723$$y2021
000155166 8564_ $$uhttps://pub.dzne.de/record/155166/files/DZNE-2021-00487.pdf$$yOpenAccess
000155166 8564_ $$uhttps://pub.dzne.de/record/155166/files/DZNE-2021-00487.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000155166 909CO $$ooai:pub.dzne.de:155166$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000155166 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9001892$$aExternal Institute$$b0$$kExtern
000155166 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9001582$$aExternal Institute$$b1$$kExtern
000155166 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9001347$$aExternal Institute$$b2$$kExtern
000155166 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001219$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000155166 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000155166 9130_ $$0G:(DE-HGF)POF3-341$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vMolecular Signaling$$x0
000155166 9141_ $$y2021
000155166 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000155166 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000155166 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000155166 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000155166 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000155166 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000155166 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155166 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000155166 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000155166 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000155166 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000155166 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000155166 920__ $$lyes
000155166 9201_ $$0I:(DE-2719)5000069$$kAG Gründemann$$lNeural Circuit Computations$$x0
000155166 980__ $$ajournal
000155166 980__ $$aVDB
000155166 980__ $$aUNRESTRICTED
000155166 980__ $$aI:(DE-2719)5000069
000155166 9801_ $$aFullTexts