| Home > Publications Database > Single cell plasticity and population coding stability in auditory thalamus upon associative learning > print |
| 001 | 155166 | ||
| 005 | 20240410115726.0 | ||
| 024 | 7 | _ | |a pmid:33903596 |2 pmid |
| 024 | 7 | _ | |a 10.1038/s41467-021-22421-8 |2 doi |
| 024 | 7 | _ | |a altmetric:104721552 |2 altmetric |
| 024 | 7 | _ | |a 33903596 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC8076296 |2 pmc |
| 037 | _ | _ | |a DZNE-2021-00487 |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Taylor, James |0 P:(DE-2719)9001892 |b 0 |u dzne |
| 245 | _ | _ | |a Single cell plasticity and population coding stability in auditory thalamus upon associative learning |
| 260 | _ | _ | |a [London] |c 2021 |b Nature Publishing Group UK |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712661638_12207 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Cortical and limbic brain areas are regarded as centres for learning. However, how thalamic sensory relays participate in plasticity upon associative learning, yet support stable long-term sensory coding remains unknown. Using a miniature microscope imaging approach, we monitor the activity of populations of auditory thalamus (medial geniculate body) neurons in freely moving mice upon fear conditioning. We find that single cells exhibit mixed selectivity and heterogeneous plasticity patterns to auditory and aversive stimuli upon learning, which is conserved in amygdala-projecting medial geniculate body neurons. Activity in auditory thalamus to amygdala-projecting neurons stabilizes single cell plasticity in the total medial geniculate body population and is necessary for fear memory consolidation. In contrast to individual cells, population level encoding of auditory stimuli remained stable across days. Our data identifies auditory thalamus as a site for complex neuronal plasticity in fear learning upstream of the amygdala that is in an ideal position to drive plasticity in cortical and limbic brain areas. These findings suggest that medial geniculate body’s role goes beyond a sole relay function by balancing experience-dependent, diverse single cell plasticity with consistent ensemble level representations of the sensory environment to support stable auditory perception with minimal affective bias. |
| 536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: pub.dzne.de |
| 650 | _ | 2 | |a Acoustic Stimulation |2 MeSH |
| 650 | _ | 2 | |a Amygdala: cytology |2 MeSH |
| 650 | _ | 2 | |a Amygdala: physiology |2 MeSH |
| 650 | _ | 2 | |a Animals |2 MeSH |
| 650 | _ | 2 | |a Auditory Pathways: physiology |2 MeSH |
| 650 | _ | 2 | |a Auditory Perception: physiology |2 MeSH |
| 650 | _ | 2 | |a Cell Plasticity: physiology |2 MeSH |
| 650 | _ | 2 | |a Conditioning, Classical: physiology |2 MeSH |
| 650 | _ | 2 | |a Fear: physiology |2 MeSH |
| 650 | _ | 2 | |a Geniculate Bodies: cytology |2 MeSH |
| 650 | _ | 2 | |a Geniculate Bodies: physiology |2 MeSH |
| 650 | _ | 2 | |a Learning: physiology |2 MeSH |
| 650 | _ | 2 | |a Mice, Inbred C57BL |2 MeSH |
| 650 | _ | 2 | |a Neuronal Plasticity: physiology |2 MeSH |
| 650 | _ | 2 | |a Neurons: physiology |2 MeSH |
| 650 | _ | 2 | |a Thalamus: cytology |2 MeSH |
| 650 | _ | 2 | |a Thalamus: physiology |2 MeSH |
| 700 | 1 | _ | |a Hasegawa, Masashi |0 P:(DE-2719)9001582 |b 1 |u dzne |
| 700 | 1 | _ | |a Benoit, Chloé Maëlle |0 P:(DE-2719)9001347 |b 2 |
| 700 | 1 | _ | |a Freire, Joana Amorim |b 3 |
| 700 | 1 | _ | |a Theodore, Marine |b 4 |
| 700 | 1 | _ | |a Ganea, Dan Alin |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Innocenti, Sabrina Milena |b 6 |
| 700 | 1 | _ | |a Lu, Tingjia |b 7 |
| 700 | 1 | _ | |a Gründemann, Jan |0 P:(DE-2719)9001219 |b 8 |e Last author |u dzne |
| 773 | _ | _ | |a 10.1038/s41467-021-22421-8 |g Vol. 12, no. 1, p. 2438 |0 PERI:(DE-600)2553671-0 |n 1 |p 2438 |t Nature Communications |v 12 |y 2021 |x 2041-1723 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/155166/files/DZNE-2021-00487.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/155166/files/DZNE-2021-00487.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:155166 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-2719)9001892 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-2719)9001582 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-2719)9001347 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)9001219 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-341 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Molecular Signaling |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-11 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-13T14:44:21Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-13T14:44:21Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-10-13T14:44:21Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-2719)5000069 |k AG Gründemann |l Neural Circuit Computations |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)5000069 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|