001     155437
005     20240410115727.0
024 7 _ |a 10.1186/s13041-021-00809-3
|2 doi
024 7 _ |a pmid:34167580
|2 pmid
024 7 _ |a pmc:PMC8223320
|2 pmc
024 7 _ |a altmetric:108148199
|2 altmetric
037 _ _ |a DZNE-2021-00643
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Vyas, Yukti
|b 0
245 _ _ |a In vitro zinc supplementation alters synaptic deficits caused by autism spectrum disorder-associated Shank2 point mutations in hippocampal neurons.
260 _ _ |a London
|c 2021
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712661998_12206
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders characterised by deficits in social interactions and repetitive behaviours. ASDs have a strong genetic basis with mutations involved in the development and function of neural circuitry. Shank proteins act as master regulators of excitatory glutamatergic synapses, and Shank mutations have been identified in people with ASD. Here, we have investigated the impact of ASD-associated Shank2 single nucleotide variants (SNVs) at the synaptic level, and the potential of in vitro zinc supplementation to prevent synaptic deficits. Dissociated rat hippocampal cultures expressing enhanced green fluorescent protein (EGFP) tagged Shank2-Wildtype (WT), and ASD-associated Shank2 single nucleotide variants (SNVs: S557N, V717F, and L1722P), were cultured in the absence or presence of 10 μM zinc. In comparison to Shank2-WT, ASD-associated Shank2 SNVs induced significant decreases in synaptic density and reduced the frequency of miniature excitatory postsynaptic currents. These structural and functional ASD-associated synaptic deficits were prevented by chronic zinc supplementation and further support zinc supplementation as a therapeutic target in ASD.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Autism
|2 Other
650 _ 7 |a Glutamatergic synapses
|2 Other
650 _ 7 |a Shank2
|2 Other
650 _ 7 |a Zinc supplementation
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Animals, Newborn
|2 MeSH
650 _ 2 |a Autism Spectrum Disorder: genetics
|2 MeSH
650 _ 2 |a Autism Spectrum Disorder: pathology
|2 MeSH
650 _ 2 |a Dietary Supplements
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Glutamic Acid: metabolism
|2 MeSH
650 _ 2 |a Hippocampus: pathology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Nerve Tissue Proteins: genetics
|2 MeSH
650 _ 2 |a Neurons: drug effects
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurons: pathology
|2 MeSH
650 _ 2 |a Point Mutation: genetics
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Synapses: drug effects
|2 MeSH
650 _ 2 |a Synapses: pathology
|2 MeSH
650 _ 2 |a Zinc: pharmacology
|2 MeSH
700 1 _ |a Jung, Yewon
|b 1
700 1 _ |a Lee, Kevin
|b 2
700 1 _ |a Garner, Craig C
|0 P:(DE-2719)2810922
|b 3
|u dzne
700 1 _ |a Montgomery, Johanna M
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1186/s13041-021-00809-3
|g Vol. 14, no. 1, p. 95
|0 PERI:(DE-600)2436057-0
|n 1
|p 95
|t Molecular brain
|v 14
|y 2021
|x 1756-6606
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/155437/files/DZNE-2021-00643.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/155437/files/DZNE-2021-00643.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:155437
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810922
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL BRAIN : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-14T16:18:41Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-14T16:18:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
920 1 _ |0 I:(DE-2719)1810001
|k AG Garner
|l Synaptopathy
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21