001     155465
005     20240320115509.0
024 7 _ |a pmc:PMC8457068
|2 pmc
024 7 _ |a 10.1111/bph.15515
|2 doi
024 7 _ |a pmid:33931856
|2 pmid
024 7 _ |a 0007-1188
|2 ISSN
024 7 _ |a 0366-0826
|2 ISSN
024 7 _ |a 1476-5381
|2 ISSN
024 7 _ |a 2056-8177
|2 ISSN
024 7 _ |a altmetric:105464755
|2 altmetric
037 _ _ |a DZNE-2021-00664
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Milanese, Marco
|b 0
245 _ _ |a Blocking glutamate mGlu5 receptors with the negative allosteric modulator CTEP improves disease course in SOD1G93A mouse model of amyotrophic lateral sclerosis.
260 _ _ |a Malden, MA
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636452650_20945
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The pathogenesis of amyotrophic lateral sclerosis (ALS) is not fully clarified, although excessive glutamate (Glu) transmission and the downstream cytotoxic cascades are major mechanisms for motor neuron death. Two metabotropic glutamate receptors (mGlu1 and mGlu5 ) are overexpressed in ALS and regulate cellular disease processes. Expression and function of mGlu5 receptors are altered at early symptomatic stages in the SOD1G93A mouse model of ALS and knockdown of mGlu5 receptors in SOD1G93A mice improved disease progression.We treated male and female SOD1G93A mice with 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP), an orally available mGlu5 receptor negative allosteric modulator (NAM), using doses of 2 mg·kg-1 per 48 h or 4 mg·kg-1 per 24 h from Day 90, an early symptomatic disease stage. Disease progression was studied by behavioural and histological approaches.CTEP dose-dependently ameliorated clinical features in SOD1G93A mice. The lower dose increased survival and improved motor skills in female mice, with barely positive effects in male mice. Higher doses significantly ameliorated disease symptoms and survival in both males and females, females being more responsive. CTEP also reduced motor neuron death, astrocyte and microglia activation, and abnormal glutamate release in the spinal cord, with equal effects in male and female mice. No differences were also observed in CTEP access to the brain.Our results suggest that mGlu5 receptors are promising targets for the treatment of ALS and highlight mGlu5 receptor NAMs as effective pharmacological tools with translational potential.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP)
|2 Other
650 _ 7 |a SOD1G93A mice
|2 Other
650 _ 7 |a amyotrophic lateral sclerosis (ALS)
|2 Other
650 _ 7 |a in vivo pharmacological treatment
|2 Other
650 _ 7 |a metabotropic glutamate receptor 5 (mGlu5 receptor)
|2 Other
650 _ 2 |a Amyotrophic Lateral Sclerosis: drug therapy
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Disease Progression
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Glutamic Acid
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Receptor, Metabotropic Glutamate 5
|2 MeSH
650 _ 2 |a Spinal Cord
|2 MeSH
650 _ 2 |a Superoxide Dismutase
|2 MeSH
650 _ 2 |a Superoxide Dismutase-1: genetics
|2 MeSH
700 1 _ |a Bonifacino, Tiziana
|b 1
700 1 _ |a Torazza, Carola
|b 2
700 1 _ |a Provenzano, Francesca
|0 P:(DE-2719)9000707
|b 3
|u dzne
700 1 _ |a Kumar, Mandeep
|b 4
700 1 _ |a Ravera, Silvia
|b 5
700 1 _ |a Zerbo, Arianna Roberta
|b 6
700 1 _ |a Frumento, Giulia
|b 7
700 1 _ |a Balbi, Matilde
|b 8
700 1 _ |a Nguyen, Quynh Tram Julia
|0 P:(DE-2719)2812645
|b 9
|u dzne
700 1 _ |a Bertola, Nadia
|b 10
700 1 _ |a Ferrando, Sara
|b 11
700 1 _ |a Viale, Maurizio
|b 12
700 1 _ |a Profumo, Aldo
|b 13
700 1 _ |a Bonanno, Giambattista
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1111/bph.15515
|g p. bph.15515
|0 PERI:(DE-600)2029728-2
|n 18
|p 3747-3764
|t British journal of pharmacology
|v 178
|y 2021
|x 1476-5381
856 4 _ |u https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.15515
856 4 _ |u https://pub.dzne.de/record/155465/files/19541.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/155465/files/19541.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:155465
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000707
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-2719)2812645
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRIT J PHARMACOL : 2021
|d 2022-11-23
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRIT J PHARMACOL : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
920 1 _ |0 I:(DE-2719)1210011
|k AG Deleidi
|l Mitochondria and inflammation in neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210011
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21