| Home > Publications Database > Blocking glutamate mGlu5 receptors with the negative allosteric modulator CTEP improves disease course in SOD1G93A mouse model of amyotrophic lateral sclerosis. > print |
| 001 | 155465 | ||
| 005 | 20240320115509.0 | ||
| 024 | 7 | _ | |a pmc:PMC8457068 |2 pmc |
| 024 | 7 | _ | |a 10.1111/bph.15515 |2 doi |
| 024 | 7 | _ | |a pmid:33931856 |2 pmid |
| 024 | 7 | _ | |a 0007-1188 |2 ISSN |
| 024 | 7 | _ | |a 0366-0826 |2 ISSN |
| 024 | 7 | _ | |a 1476-5381 |2 ISSN |
| 024 | 7 | _ | |a 2056-8177 |2 ISSN |
| 024 | 7 | _ | |a altmetric:105464755 |2 altmetric |
| 037 | _ | _ | |a DZNE-2021-00664 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Milanese, Marco |b 0 |
| 245 | _ | _ | |a Blocking glutamate mGlu5 receptors with the negative allosteric modulator CTEP improves disease course in SOD1G93A mouse model of amyotrophic lateral sclerosis. |
| 260 | _ | _ | |a Malden, MA |c 2021 |b Wiley |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1636452650_20945 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The pathogenesis of amyotrophic lateral sclerosis (ALS) is not fully clarified, although excessive glutamate (Glu) transmission and the downstream cytotoxic cascades are major mechanisms for motor neuron death. Two metabotropic glutamate receptors (mGlu1 and mGlu5 ) are overexpressed in ALS and regulate cellular disease processes. Expression and function of mGlu5 receptors are altered at early symptomatic stages in the SOD1G93A mouse model of ALS and knockdown of mGlu5 receptors in SOD1G93A mice improved disease progression.We treated male and female SOD1G93A mice with 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP), an orally available mGlu5 receptor negative allosteric modulator (NAM), using doses of 2 mg·kg-1 per 48 h or 4 mg·kg-1 per 24 h from Day 90, an early symptomatic disease stage. Disease progression was studied by behavioural and histological approaches.CTEP dose-dependently ameliorated clinical features in SOD1G93A mice. The lower dose increased survival and improved motor skills in female mice, with barely positive effects in male mice. Higher doses significantly ameliorated disease symptoms and survival in both males and females, females being more responsive. CTEP also reduced motor neuron death, astrocyte and microglia activation, and abnormal glutamate release in the spinal cord, with equal effects in male and female mice. No differences were also observed in CTEP access to the brain.Our results suggest that mGlu5 receptors are promising targets for the treatment of ALS and highlight mGlu5 receptor NAMs as effective pharmacological tools with translational potential. |
| 536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP) |2 Other |
| 650 | _ | 7 | |a SOD1G93A mice |2 Other |
| 650 | _ | 7 | |a amyotrophic lateral sclerosis (ALS) |2 Other |
| 650 | _ | 7 | |a in vivo pharmacological treatment |2 Other |
| 650 | _ | 7 | |a metabotropic glutamate receptor 5 (mGlu5 receptor) |2 Other |
| 650 | _ | 2 | |a Amyotrophic Lateral Sclerosis: drug therapy |2 MeSH |
| 650 | _ | 2 | |a Animals |2 MeSH |
| 650 | _ | 2 | |a Disease Models, Animal |2 MeSH |
| 650 | _ | 2 | |a Disease Progression |2 MeSH |
| 650 | _ | 2 | |a Female |2 MeSH |
| 650 | _ | 2 | |a Glutamic Acid |2 MeSH |
| 650 | _ | 2 | |a Male |2 MeSH |
| 650 | _ | 2 | |a Mice |2 MeSH |
| 650 | _ | 2 | |a Mice, Transgenic |2 MeSH |
| 650 | _ | 2 | |a Receptor, Metabotropic Glutamate 5 |2 MeSH |
| 650 | _ | 2 | |a Spinal Cord |2 MeSH |
| 650 | _ | 2 | |a Superoxide Dismutase |2 MeSH |
| 650 | _ | 2 | |a Superoxide Dismutase-1: genetics |2 MeSH |
| 700 | 1 | _ | |a Bonifacino, Tiziana |b 1 |
| 700 | 1 | _ | |a Torazza, Carola |b 2 |
| 700 | 1 | _ | |a Provenzano, Francesca |0 P:(DE-2719)9000707 |b 3 |u dzne |
| 700 | 1 | _ | |a Kumar, Mandeep |b 4 |
| 700 | 1 | _ | |a Ravera, Silvia |b 5 |
| 700 | 1 | _ | |a Zerbo, Arianna Roberta |b 6 |
| 700 | 1 | _ | |a Frumento, Giulia |b 7 |
| 700 | 1 | _ | |a Balbi, Matilde |b 8 |
| 700 | 1 | _ | |a Nguyen, Quynh Tram Julia |0 P:(DE-2719)2812645 |b 9 |u dzne |
| 700 | 1 | _ | |a Bertola, Nadia |b 10 |
| 700 | 1 | _ | |a Ferrando, Sara |b 11 |
| 700 | 1 | _ | |a Viale, Maurizio |b 12 |
| 700 | 1 | _ | |a Profumo, Aldo |b 13 |
| 700 | 1 | _ | |a Bonanno, Giambattista |0 P:(DE-HGF)0 |b 14 |e Corresponding author |
| 773 | _ | _ | |a 10.1111/bph.15515 |g p. bph.15515 |0 PERI:(DE-600)2029728-2 |n 18 |p 3747-3764 |t British journal of pharmacology |v 178 |y 2021 |x 1476-5381 |
| 856 | 4 | _ | |u https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.15515 |
| 856 | 4 | _ | |u https://pub.dzne.de/record/155465/files/19541.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://pub.dzne.de/record/155465/files/19541.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:pub.dzne.de:155465 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)9000707 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-2719)2812645 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-341 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Molecular Signaling |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-23 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BRIT J PHARMACOL : 2021 |d 2022-11-23 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-02 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-23 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-23 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-23 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b BRIT J PHARMACOL : 2021 |d 2022-11-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-23 |
| 920 | 1 | _ | |0 I:(DE-2719)1210011 |k AG Deleidi |l Mitochondria and inflammation in neurodegeneration |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1210011 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|