000155467 001__ 155467
000155467 005__ 20240425115930.0
000155467 0247_ $$2doi$$a10.1002/hipo.23373
000155467 0247_ $$2pmid$$apmid:34174010
000155467 0247_ $$2ISSN$$a1050-9631
000155467 0247_ $$2ISSN$$a1098-1063
000155467 0247_ $$2altmetric$$aaltmetric:108252176
000155467 037__ $$aDZNE-2021-00666
000155467 041__ $$aEnglish
000155467 082__ $$a610
000155467 1001_ $$aBerdugo-Vega, Gabriel$$b0
000155467 245__ $$aAdult-born neurons promote cognitive flexibility by improving memory precision and indexing.
000155467 260__ $$aNew York, NY [u.a.]$$bWiley$$c2021
000155467 3367_ $$2DRIVER$$aarticle
000155467 3367_ $$2DataCite$$aOutput Types/Journal article
000155467 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713966522_26796
000155467 3367_ $$2BibTeX$$aARTICLE
000155467 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155467 3367_ $$00$$2EndNote$$aJournal Article
000155467 520__ $$aAdult neurogenesis in the hippocampal dentate gyrus (DG) is an extraordinary form of plasticity fundamental for cognitive flexibility. Recent evidence showed that newborn neurons differentially modulate input to the infra- and supra-pyramidal blades of the DG during the processing of spatial and contextual information, respectively. However, how this differential regulation by neurogenesis is translated into different aspects contributing cognitive flexibility is unclear. Here, we increased adult-born neurons by a genetic expansion of neural stem cells and studied their influence during navigational learning. We found that increased neurogenesis improved both memory precision and flexibility. Interestingly, each of these gains was associated with distinct subregional patterns of activity and better separation of memory representations in the DG-CA3 network. Our results highlight the role of adult-born neurons in promoting memory precision and indexing and suggests their anatomical allocation within specific DG-CA3 compartments, together contributing to cognitive flexibility.
000155467 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000155467 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000155467 650_7 $$2Other$$acognitive flexibility
000155467 650_7 $$2Other$$ahippocampal neurogenesis
000155467 650_7 $$2Other$$aindexing
000155467 650_7 $$2Other$$amemory precision
000155467 650_2 $$2MeSH$$aCognition: physiology
000155467 650_2 $$2MeSH$$aDentate Gyrus: physiology
000155467 650_2 $$2MeSH$$aNeural Stem Cells
000155467 650_2 $$2MeSH$$aNeurogenesis: physiology
000155467 650_2 $$2MeSH$$aNeurons: physiology
000155467 7001_ $$aLee, Chi-Chieh$$b1
000155467 7001_ $$0P:(DE-2719)2810535$$aGarthe, Alexander$$b2$$udzne
000155467 7001_ $$0P:(DE-2719)2000011$$aKempermann, Gerd$$b3$$udzne
000155467 7001_ $$00000-0002-3703-2802$$aCalegari, Federico$$b4$$eCorresponding author
000155467 773__ $$0PERI:(DE-600)1498049-6$$a10.1002/hipo.23373$$gp. hipo.23373$$n10$$p1068-1079$$tHippocampus$$v31$$x1098-1063$$y2021
000155467 8564_ $$uhttps://onlinelibrary.wiley.com/doi/10.1002/hipo.23373
000155467 8564_ $$uhttps://pub.dzne.de/record/155467/files/DZNE-2021-00666.pdf$$yOpenAccess
000155467 8564_ $$uhttps://pub.dzne.de/record/155467/files/DZNE-2021-00666.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000155467 909CO $$ooai:pub.dzne.de:155467$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000155467 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810535$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000155467 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000011$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000155467 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000155467 9130_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000155467 9141_ $$y2021
000155467 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000155467 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000155467 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22
000155467 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000155467 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000155467 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000155467 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHIPPOCAMPUS : 2021$$d2022-11-22
000155467 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000155467 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000155467 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-22
000155467 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000155467 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-22
000155467 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155467 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000155467 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000155467 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-22$$wger
000155467 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000155467 9201_ $$0I:(DE-2719)1740001$$kAG Garthe$$lTechnology Platform Neurobiology of Behaviour$$x0
000155467 9201_ $$0I:(DE-2719)1710001$$kAG Kempermann$$lAdult Neurogenesis$$x1
000155467 980__ $$ajournal
000155467 980__ $$aVDB
000155467 980__ $$aUNRESTRICTED
000155467 980__ $$aI:(DE-2719)1740001
000155467 980__ $$aI:(DE-2719)1710001
000155467 9801_ $$aFullTexts