001     155577
005     20230915092330.0
024 7 _ |a 10.1038/s41418-021-00782-3
|2 doi
024 7 _ |a pmid:33879858
|2 pmid
024 7 _ |a pmc:PMC8056997
|2 pmc
024 7 _ |a 1350-9047
|2 ISSN
024 7 _ |a 1476-5403
|2 ISSN
024 7 _ |a altmetric:104558354
|2 altmetric
037 _ _ |a DZNE-2021-00755
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zhang, Zhengrong
|b 0
245 _ _ |a SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination.
260 _ _ |a London
|c 2021
|b Macmillan
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636455172_20945
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is highly contagious and causes lymphocytopenia, but the underlying mechanisms are poorly understood. We demonstrate here that heterotypic cell-in-cell structures with lymphocytes inside multinucleate syncytia are prevalent in the lung tissues of coronavirus disease 2019 (COVID-19) patients. These unique cellular structures are a direct result of SARS-CoV-2 infection, as the expression of the SARS-CoV-2 spike glycoprotein is sufficient to induce a rapid (~45.1 nm/s) membrane fusion to produce syncytium, which could readily internalize multiple lines of lymphocytes to form typical cell-in-cell structures, remarkably leading to the death of internalized cells. This membrane fusion is dictated by a bi-arginine motif within the polybasic S1/S2 cleavage site, which is frequently present in the surface glycoprotein of most highly contagious viruses. Moreover, candidate anti-viral drugs could efficiently inhibit spike glycoprotein processing, membrane fusion, and cell-in-cell formation. Together, we delineate a molecular and cellular rationale for SARS-CoV-2 pathogenesis and identify novel targets for COVID-19 therapy.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a COVID-19: pathology
|2 MeSH
650 _ 2 |a COVID-19: virology
|2 MeSH
650 _ 2 |a Cell Line
|2 MeSH
650 _ 2 |a Cell Line, Tumor
|2 MeSH
650 _ 2 |a Giant Cells: pathology
|2 MeSH
650 _ 2 |a Giant Cells: virology
|2 MeSH
650 _ 2 |a HEK293 Cells
|2 MeSH
650 _ 2 |a HeLa Cells
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Jurkat Cells
|2 MeSH
650 _ 2 |a K562 Cells
|2 MeSH
650 _ 2 |a Lymphocytes: pathology
|2 MeSH
650 _ 2 |a Lymphocytes: virology
|2 MeSH
650 _ 2 |a SARS-CoV-2: metabolism
|2 MeSH
650 _ 2 |a SARS-CoV-2: pathogenicity
|2 MeSH
650 _ 2 |a Spike Glycoprotein, Coronavirus: metabolism
|2 MeSH
650 _ 2 |a Virus Internalization
|2 MeSH
650 _ 2 |a Virus Replication: genetics
|2 MeSH
700 1 _ |a Zheng, You
|b 1
700 1 _ |a Niu, Zubiao
|b 2
700 1 _ |a Zhang, Bo
|b 3
700 1 _ |a Wang, Chenxi
|b 4
700 1 _ |a Yao, Xiaohong
|b 5
700 1 _ |a Peng, Haoran
|b 6
700 1 _ |a Franca, Del Nonno
|b 7
700 1 _ |a Wang, Yunyun
|b 8
700 1 _ |a Zhu, Yichao
|b 9
700 1 _ |a Su, Yan
|b 10
700 1 _ |a Tang, Meng
|b 11
700 1 _ |a Jiang, Xiaoyi
|b 12
700 1 _ |a Ren, He
|b 13
700 1 _ |a He, Meifang
|b 14
700 1 _ |a Wang, Yuqi
|b 15
700 1 _ |a Gao, Lihua
|b 16
700 1 _ |a Zhao, Ping
|b 17
700 1 _ |a Shi, Hanping
|b 18
700 1 _ |a Chen, Zhaolie
|b 19
700 1 _ |a Wang, Xiaoning
|b 20
700 1 _ |a Piacentini, Mauro
|b 21
700 1 _ |a Bian, Xiuwu
|0 0000-0003-4383-0197
|b 22
700 1 _ |a Melino, Gerry
|0 P:(DE-2719)9001390
|b 23
|u dzne
700 1 _ |a Liu, Liang
|b 24
700 1 _ |a Huang, Hongyan
|b 25
700 1 _ |a Sun, Qiang
|0 0000-0001-8094-2214
|b 26
|e Corresponding author
773 _ _ |a 10.1038/s41418-021-00782-3
|0 PERI:(DE-600)1496681-5
|n 9
|p 2765-2777
|t Cell death and differentiation
|v 28
|y 2021
|x 1476-5403
856 4 _ |u https://www.nature.com/articles/s41418-021-00782-3
909 C O |p VDB
|o oai:pub.dzne.de:155577
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 23
|6 P:(DE-2719)9001390
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL DEATH DIFFER : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CELL DEATH DIFFER : 2021
|d 2022-11-30
920 1 _ |0 I:(DE-2719)5000018
|k AG Nicotera
|l Synaptic Connectivity and Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000018
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21