001     155596
005     20240404115647.0
024 7 _ |a 10.1016/j.mcpro.2021.100061
|2 doi
024 7 _ |a pmid:33582301
|2 pmid
024 7 _ |a pmc:PMC7995663
|2 pmc
024 7 _ |a 1535-9476
|2 ISSN
024 7 _ |a 1535-9484
|2 ISSN
024 7 _ |a altmetric:100203387
|2 altmetric
037 _ _ |a DZNE-2021-00764
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Silbern, Ivan
|b 0
245 _ _ |a Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling.
260 _ _ |a Bethesda, Md.
|c 2021
|b The American Society for Biochemistry and Molecular Biology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712149314_27004
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Synaptic transmission is mediated by the regulated exocytosis of synaptic vesicles. When the presynaptic membrane is depolarized by an incoming action potential, voltage-gated calcium channels open, resulting in the influx of calcium ions that triggers the fusion of synaptic vesicles (SVs) with the plasma membrane. SVs are recycled by endocytosis. Phosphorylation of synaptic proteins plays a major role in these processes, and several studies have shown that the synaptic phosphoproteome changes rapidly in response to depolarization. However, it is unclear which of these changes are directly linked to SV cycling and which might regulate other presynaptic functions that are also controlled by calcium-dependent kinases and phosphatases. To address this question, we analyzed changes in the phosphoproteome using rat synaptosomes in which exocytosis was blocked with botulinum neurotoxins (BoNTs) while depolarization-induced calcium influx remained unchanged. BoNT-treatment significantly alters the response of the synaptic phoshoproteome to depolarization and results in reduced phosphorylation levels when compared with stimulation of synaptosomes by depolarization with KCl alone. We dissect the primary Ca2+-dependent phosphorylation from SV-cycling-dependent phosphorylation and confirm an effect of such SV-cycling-dependent phosphorylation events on syntaxin-1a-T21/T23, synaptobrevin-S75, and cannabinoid receptor-1-S314/T322 on exo- and endocytosis in cultured hippocampal neurons.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Endocytosis
|2 Other
650 _ 7 |a SNARE
|2 Other
650 _ 7 |a botulinum neurotoxins
|2 Other
650 _ 7 |a cannabinoid receptor
|2 Other
650 _ 7 |a exocytosis
|2 Other
650 _ 7 |a phosphomimetic studies
|2 Other
650 _ 7 |a phosphorylation
|2 Other
650 _ 7 |a synapse
|2 Other
650 _ 7 |a synaptobrevin
|2 Other
650 _ 7 |a syntaxin
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Botulinum Toxins: pharmacology
|2 MeSH
650 _ 2 |a Calcium: metabolism
|2 MeSH
650 _ 2 |a Clostridium botulinum
|2 MeSH
650 _ 2 |a Glutamic Acid: metabolism
|2 MeSH
650 _ 2 |a HeLa Cells
|2 MeSH
650 _ 2 |a Hippocampus: cytology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurotoxins: pharmacology
|2 MeSH
650 _ 2 |a Phosphoproteins: metabolism
|2 MeSH
650 _ 2 |a Phosphorylation
|2 MeSH
650 _ 2 |a Proteome
|2 MeSH
650 _ 2 |a R-SNARE Proteins: metabolism
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
650 _ 2 |a Receptor, Cannabinoid, CB1: metabolism
|2 MeSH
650 _ 2 |a Synaptic Vesicles: metabolism
|2 MeSH
650 _ 2 |a Synaptosomes: metabolism
|2 MeSH
650 _ 2 |a Syntaxin 1: metabolism
|2 MeSH
700 1 _ |a Pan, Kuan-Ting
|b 1
700 1 _ |a Fiosins, Maksims
|0 P:(DE-2719)2811935
|b 2
|u dzne
700 1 _ |a Bonn, Stefan
|0 P:(DE-2719)2810547
|b 3
|u dzne
700 1 _ |a Rizzoli, Silvio O
|b 4
700 1 _ |a Fornasiero, Eugenio F
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Urlaub, Henning
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Jahn, Reinhard
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.mcpro.2021.100061
|g Vol. 20, p. 100061 -
|0 PERI:(DE-600)2071375-7
|p 100061
|t Molecular & cellular proteomics
|v 20
|y 2021
|x 1535-9476
856 4 _ |u https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995663/
856 4 _ |u https://pub.dzne.de/record/155596/files/DZNE-2021-00764.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/155596/files/DZNE-2021-00764.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:155596
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811935
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810547
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL CELL PROTEOMICS : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-15T13:50:16Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-15T13:50:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-15T13:50:16Z
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL CELL PROTEOMICS : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
920 1 _ |0 I:(DE-2719)1210002
|k AG Heutink
|l Genome Biology of Neurodegenerative Diseases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21