001     155681
005     20230915092336.0
024 7 _ |a 10.1038/s41593-020-00757-6
|2 doi
024 7 _ |a pmid:33349711
|2 pmid
024 7 _ |a pmc:PMC7116742
|2 pmc
024 7 _ |a 1097-6256
|2 ISSN
024 7 _ |a 1546-1726
|2 ISSN
024 7 _ |a altmetric:96439308
|2 altmetric
037 _ _ |a DZNE-2021-00849
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Berghoff, Stefan A
|b 0
245 _ _ |a Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis.
260 _ _ |a New York, NY
|c 2021
|b Nature America
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630495520_17168
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The repair of inflamed, demyelinated lesions as in multiple sclerosis (MS) necessitates the clearance of cholesterol-rich myelin debris by microglia/macrophages and the switch from a pro-inflammatory to an anti-inflammatory lesion environment. Subsequently, oligodendrocytes increase cholesterol levels as a prerequisite for synthesizing new myelin membranes. We hypothesized that lesion resolution is regulated by the fate of cholesterol from damaged myelin and oligodendroglial sterol synthesis. By integrating gene expression profiling, genetics and comprehensive phenotyping, we found that, paradoxically, sterol synthesis in myelin-phagocytosing microglia/macrophages determines the repair of acutely demyelinated lesions. Rather than producing cholesterol, microglia/macrophages synthesized desmosterol, the immediate cholesterol precursor. Desmosterol activated liver X receptor (LXR) signaling to resolve inflammation, creating a permissive environment for oligodendrocyte differentiation. Moreover, LXR target gene products facilitated the efflux of lipid and cholesterol from lipid-laden microglia/macrophages to support remyelination by oligodendrocytes. Consequently, pharmacological stimulation of sterol synthesis boosted the repair of demyelinated lesions, suggesting novel therapeutic strategies for myelin repair in MS.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Liver X Receptors
|2 NLM Chemicals
650 _ 7 |a Nr1h3 protein, mouse
|2 NLM Chemicals
650 _ 7 |a Sterols
|2 NLM Chemicals
650 _ 7 |a Desmosterol
|0 313-04-2
|2 NLM Chemicals
650 _ 7 |a Squalene
|0 7QWM220FJH
|2 NLM Chemicals
650 _ 7 |a Cholesterol
|0 97C5T2UQ7J
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Cholesterol: metabolism
|2 MeSH
650 _ 2 |a Demyelinating Diseases: pathology
|2 MeSH
650 _ 2 |a Desmosterol: metabolism
|2 MeSH
650 _ 2 |a Encephalomyelitis, Autoimmune, Experimental
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Gene Expression Profiling
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Inflammation: metabolism
|2 MeSH
650 _ 2 |a Inflammation: pathology
|2 MeSH
650 _ 2 |a Lipid Metabolism
|2 MeSH
650 _ 2 |a Liver X Receptors: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Microglia: physiology
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Multiple Sclerosis
|2 MeSH
650 _ 2 |a Oligodendroglia: metabolism
|2 MeSH
650 _ 2 |a Phagocytosis
|2 MeSH
650 _ 2 |a Squalene: metabolism
|2 MeSH
650 _ 2 |a Sterols: biosynthesis
|2 MeSH
700 1 _ |a Spieth, Lena
|0 0000-0002-0308-0144
|b 1
700 1 _ |a Sun, Ting
|0 P:(DE-2719)2813913
|b 2
|u dzne
700 1 _ |a Hosang, Leon
|b 3
700 1 _ |a Schlaphoff, Lennart
|0 0000-0001-8043-4025
|b 4
700 1 _ |a Depp, Constanze
|0 0000-0003-2868-6932
|b 5
700 1 _ |a Düking, Tim
|b 6
700 1 _ |a Winchenbach, Jan
|b 7
700 1 _ |a Neuber, Jonathan
|b 8
700 1 _ |a Ewers, David
|0 0000-0003-1037-1027
|b 9
700 1 _ |a Scholz, Patricia
|0 0000-0003-0761-9175
|b 10
700 1 _ |a van der Meer, Franziska
|b 11
700 1 _ |a Cantuti-Castelvetri, Ludovico
|0 P:(DE-2719)2812590
|b 12
|u dzne
700 1 _ |a Sasmita, Andrew O
|0 0000-0001-7379-6749
|b 13
700 1 _ |a Meschkat, Martin
|b 14
700 1 _ |a Ruhwedel, Torben
|0 0000-0002-9535-9395
|b 15
700 1 _ |a Möbius, Wiebke
|0 0000-0002-2902-7165
|b 16
700 1 _ |a Sankowski, Roman
|0 0000-0001-9215-8021
|b 17
700 1 _ |a Prinz, Marco
|0 0000-0002-0349-1955
|b 18
700 1 _ |a Huitinga, Inge
|0 0000-0002-4878-8920
|b 19
700 1 _ |a Sereda, Michael W
|b 20
700 1 _ |a Odoardi, Francesca
|b 21
700 1 _ |a Ischebeck, Till
|b 22
700 1 _ |a Simons, Mikael
|0 P:(DE-2719)2811642
|b 23
|u dzne
700 1 _ |a Stadelmann-Nessler, Christine
|b 24
700 1 _ |a Edgar, Julia M
|b 25
700 1 _ |a Nave, Klaus-Armin
|0 0000-0001-8724-9666
|b 26
700 1 _ |a Saher, Gesine
|0 0000-0003-3507-9604
|b 27
|e Corresponding author
773 _ _ |a 10.1038/s41593-020-00757-6
|g Vol. 24, no. 1, p. 47 - 60
|0 PERI:(DE-600)1494955-6
|n 1
|p 47 - 60
|t Nature neuroscience
|v 24
|y 2021
|x 1546-1726
856 4 _ |u https://www.nature.com/articles/s41593-020-00757-6
909 C O |o oai:pub.dzne.de:155681
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-2719)2813913
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2812590
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 23
|6 P:(DE-2719)2811642
913 0 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NEUROSCI : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT NEUROSCI : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110008
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21