001     155689
005     20230915092336.0
024 7 _ |a 10.1016/j.nbd.2021.105404
|2 doi
024 7 _ |a pmid:34044146
|2 pmid
024 7 _ |a 0969-9961
|2 ISSN
024 7 _ |a 1095-953X
|2 ISSN
024 7 _ |a altmetric:106612877
|2 altmetric
037 _ _ |a DZNE-2021-00857
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Fauser, Mareike
|0 P:(DE-2719)9000068
|b 0
|u dzne
245 _ _ |a Subthalamic nucleus deep brain stimulation induces sustained neurorestoration in the mesolimbic dopaminergic system in a Parkinson's disease model.
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683039969_12618
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established therapeutic principle in Parkinson's disease, but the underlying mechanisms, particularly mediating non-motor actions, remain largely enigmatic.The delayed onset of neuropsychiatric actions in conjunction with first experimental evidence that STN-DBS causes disease-modifying effects prompted our investigation on how cellular plasticity in midbrain dopaminergic systems is affected by STN-DBS.We applied unilateral or bilateral STN-DBS in two independent cohorts of 6-hydroxydopamine hemiparkinsonian rats four to eight weeks after dopaminergic lesioning to allow for the development of a stable dopaminergic dysfunction prior to DBS electrode implantation.After 5 weeks of STN-DBS, stimulated animals had significantly more TH+ dopaminergic neurons and fibres in both the nigrostriatal and the mesolimbic systems compared to sham controls with large effect sizes of gHedges = 1.9-3.4. DBS of the entopeduncular nucleus as the homologue of the human Globus pallidus internus did not alter the dopaminergic systems. STN-DBS effects on mesolimbic dopaminergic neurons were largely confirmed in an independent animal cohort with unilateral STN stimulation for 6 weeks or for 3 weeks followed by a 3 weeks washout period. The latter subgroup even demonstrated persistent mesolimbic dopaminergic plasticity after washout. Pilot behavioural testing showed that augmentative dopaminergic effects on the mesolimbic system by STN-DBS might translate into improvement of sensorimotor neglect.Our data support sustained neurorestorative effects of STN-DBS not only in the nigrostriatal but also in the mesolimbic system as a potential factor mediating long-latency neuropsychiatric effects of STN-DBS in Parkinson's disease.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a 6-hydroxydopamine
|2 Other
650 _ 7 |a Deep brain stimulation
|2 Other
650 _ 7 |a Dopaminergic neurons
|2 Other
650 _ 7 |a Mesolimbic system
|2 Other
650 _ 7 |a Neurorestoration
|2 Other
650 _ 7 |a Nigrostriatal system
|2 Other
650 _ 7 |a Parkinson's disease
|2 Other
650 _ 7 |a Subthalamic nucleus
|2 Other
650 _ 7 |a Ventral tegmental area
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Corpus Striatum: metabolism
|2 MeSH
650 _ 2 |a Deep Brain Stimulation: methods
|2 MeSH
650 _ 2 |a Dopaminergic Neurons: metabolism
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Limbic System: metabolism
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Oxidopamine: toxicity
|2 MeSH
650 _ 2 |a Parkinsonian Disorders: chemically induced
|2 MeSH
650 _ 2 |a Parkinsonian Disorders: metabolism
|2 MeSH
650 _ 2 |a Parkinsonian Disorders: therapy
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
650 _ 2 |a Substantia Nigra: metabolism
|2 MeSH
650 _ 2 |a Subthalamic Nucleus: metabolism
|2 MeSH
650 _ 2 |a Tyrosine 3-Monooxygenase: metabolism
|2 MeSH
650 _ 2 |a Ventral Tegmental Area: metabolism
|2 MeSH
700 1 _ |a Ricken, Manuel
|b 1
700 1 _ |a Markert, Franz
|b 2
700 1 _ |a Weis, Nikolai
|b 3
700 1 _ |a Schmitt, Oliver
|b 4
700 1 _ |a Gimsa, Jan
|b 5
700 1 _ |a Winter, Christine
|b 6
700 1 _ |a Badstübner-Meeske, Kathrin
|b 7
700 1 _ |a Storch, Alexander
|0 P:(DE-2719)9000306
|b 8
|e Last author
|u dzne
773 _ _ |a 10.1016/j.nbd.2021.105404
|g Vol. 156, p. 105404 -
|0 PERI:(DE-600)1471408-5
|p 105404
|t Neurobiology of disease
|v 156
|y 2021
|x 0969-9961
856 4 _ |u https://pub.dzne.de/record/155689/files/DZNE-2021-00857.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/155689/files/DZNE-2021-00857.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:155689
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)9000068
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9000306
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROBIOL DIS : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-20T10:26:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-20T10:26:40Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-20T10:26:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROBIOL DIS : 2021
|d 2022-11-18
920 1 _ |0 I:(DE-2719)5000014
|k AG Storch 2 Rostock
|l Non-Motor Symptoms in Parkinson's disease
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000014
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21