001     155693
005     20240227115125.0
024 7 _ |a 10.15252/emmm.202013131
|2 doi
024 7 _ |a pmid:34125498
|2 pmid
024 7 _ |a pmc:PMC8261490
|2 pmc
024 7 _ |a 1715-4684
|2 ISSN
024 7 _ |a 1757-4676
|2 ISSN
024 7 _ |a 1757-4684
|2 ISSN
024 7 _ |a altmetric:107613592
|2 altmetric
037 _ _ |a DZNE-2021-00861
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Catanese, Alberto
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Synaptic disruption and CREB-regulated transcription are restored by K+ channel blockers in ALS.
260 _ _ |a Heidelberg
|c 2021
|b EMBO Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709022555_12959
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which is still missing effective therapeutic strategies. Although manipulation of neuronal excitability has been tested in murine and human ALS models, it is still under debate whether neuronal activity might represent a valid target for efficient therapies. In this study, we exploited a combination of transcriptomics, proteomics, optogenetics and pharmacological approaches to investigate the activity-related pathological features of iPSC-derived C9orf72-mutant motoneurons (MN). We found that human ALSC9orf72 MN are characterized by accumulation of aberrant aggresomes, reduced expression of synaptic genes, loss of synaptic contacts and a dynamic 'malactivation' of the transcription factor CREB. A similar phenotype was also found in TBK1-mutant MN and upon overexpression of poly(GA) aggregates in primary neurons, indicating a strong convergence of pathological phenotypes on synaptic dysregulation. Notably, these alterations, along with neuronal survival, could be rescued by treating ALS-related neurons with the K+ channel blockers Apamin and XE991, which, respectively, target the SK and the Kv7 channels. Thus, our study shows that restoring the activity-dependent transcriptional programme and synaptic composition exerts a neuroprotective effect on ALS disease progression.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a ALS
|2 Other
650 _ 7 |a CREB
|2 Other
650 _ 7 |a hiPSC
|2 Other
650 _ 7 |a motoneuron
|2 Other
650 _ 7 |a synapse
|2 Other
650 _ 2 |a Amyotrophic Lateral Sclerosis: drug therapy
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: genetics
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Motor Neurons
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases
|2 MeSH
650 _ 2 |a Neuroprotective Agents
|2 MeSH
700 1 _ |a Rajkumar, Sandeep
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sommer, Daniel
|b 2
700 1 _ |a Freisem, Dennis
|b 3
700 1 _ |a Wirth, Alexander
|b 4
700 1 _ |a Aly, Amr
|b 5
700 1 _ |a Massa-López, David
|0 P:(DE-2719)9000658
|b 6
|u dzne
700 1 _ |a Olivieri, Andrea
|b 7
700 1 _ |a Torelli, Federica
|b 8
700 1 _ |a Ioannidis, Valentin
|b 9
700 1 _ |a Lipecka, Joanna
|b 10
700 1 _ |a Guerrera, Ida Chiara
|b 11
700 1 _ |a Zytnicki, Daniel
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Ludolph, Albert
|0 P:(DE-2719)2812633
|b 13
|u dzne
700 1 _ |a Kabashi, Edor
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mulaw, Medhanie A
|b 15
700 1 _ |a Roselli, Francesco
|0 P:(DE-2719)2812851
|b 16
|u dzne
700 1 _ |a Böckers, Tobias
|0 P:(DE-2719)2812855
|b 17
|e Last author
|u dzne
773 _ _ |a 10.15252/emmm.202013131
|g Vol. 13, no. 7
|0 PERI:(DE-600)2485479-7
|n 7
|p e13131
|t EMBO molecular medicine
|v 13
|y 2021
|x 1757-4684
856 4 _ |u https://pub.dzne.de/record/155693/files/DZNE-2021-00861.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/155693/files/DZNE-2021-00861.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:155693
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9000658
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2812633
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2812851
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2812855
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
913 0 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO MOL MED : 2021
|d 2022-11-29
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EMBO MOL MED : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-07-19T13:19:31Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-07-19T13:19:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review, Double blind peer review
|d 2021-07-19T13:19:31Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-04
920 1 _ |0 I:(DE-2719)5000077
|k Clinical Study Center Ulm
|l Clinical Study Center Ulm
|x 0
920 1 _ |0 I:(DE-2719)1910001
|k AG Roselli
|l Metabolic Changes in Neurodegeneration
|x 1
920 1 _ |0 I:(DE-2719)1910002
|k AG Böckers
|l Translational Protein Biochemistry
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000077
980 _ _ |a I:(DE-2719)1910001
980 _ _ |a I:(DE-2719)1910002
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21