000155832 001__ 155832
000155832 005__ 20240619121039.0
000155832 0247_ $$2doi$$a10.15252/embj.2019103701
000155832 0247_ $$2pmid$$apmid:33319920
000155832 0247_ $$2pmc$$apmc:PMC7849313
000155832 0247_ $$2ISSN$$a0261-4189
000155832 0247_ $$2ISSN$$a1460-2075
000155832 0247_ $$2altmetric$$aaltmetric:96035212
000155832 037__ $$aDZNE-2021-00992
000155832 041__ $$aEnglish
000155832 082__ $$a570
000155832 1001_ $$aFeurle, Patrick$$b0
000155832 245__ $$aSATB2-LEMD2 interaction links nuclear shape plasticity to regulation of cognition-related genes.
000155832 260__ $$aHoboken, NJ [u.a.]$$bWiley$$c2021
000155832 3367_ $$2DRIVER$$aarticle
000155832 3367_ $$2DataCite$$aOutput Types/Journal article
000155832 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718784750_8363
000155832 3367_ $$2BibTeX$$aARTICLE
000155832 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155832 3367_ $$00$$2EndNote$$aJournal Article
000155832 520__ $$aSATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.
000155832 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000155832 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000155832 650_7 $$2Other$$aSATB2
000155832 650_7 $$2Other$$achromatin
000155832 650_7 $$2Other$$ahuman cognitive ability
000155832 650_7 $$2Other$$aneuronal activity
000155832 650_7 $$2Other$$anuclear envelope
000155832 650_2 $$2MeSH$$aATPases Associated with Diverse Cellular Activities: metabolism
000155832 650_2 $$2MeSH$$aAnimals
000155832 650_2 $$2MeSH$$aCell Nucleus: metabolism
000155832 650_2 $$2MeSH$$aCell Plasticity
000155832 650_2 $$2MeSH$$aCells, Cultured
000155832 650_2 $$2MeSH$$aCognition
000155832 650_2 $$2MeSH$$aEndosomal Sorting Complexes Required for Transport: metabolism
000155832 650_2 $$2MeSH$$aGene Regulatory Networks
000155832 650_2 $$2MeSH$$aHeLa Cells
000155832 650_2 $$2MeSH$$aHippocampus: cytology
000155832 650_2 $$2MeSH$$aHippocampus: metabolism
000155832 650_2 $$2MeSH$$aHumans
000155832 650_2 $$2MeSH$$aIntellectual Disability: genetics
000155832 650_2 $$2MeSH$$aIntellectual Disability: metabolism
000155832 650_2 $$2MeSH$$aMale
000155832 650_2 $$2MeSH$$aMatrix Attachment Region Binding Proteins: chemistry
000155832 650_2 $$2MeSH$$aMatrix Attachment Region Binding Proteins: genetics
000155832 650_2 $$2MeSH$$aMatrix Attachment Region Binding Proteins: metabolism
000155832 650_2 $$2MeSH$$aMembrane Proteins: chemistry
000155832 650_2 $$2MeSH$$aMembrane Proteins: genetics
000155832 650_2 $$2MeSH$$aMembrane Proteins: metabolism
000155832 650_2 $$2MeSH$$aMice
000155832 650_2 $$2MeSH$$aMutation
000155832 650_2 $$2MeSH$$aNeurons: cytology
000155832 650_2 $$2MeSH$$aNeurons: metabolism
000155832 650_2 $$2MeSH$$aNuclear Envelope: metabolism
000155832 650_2 $$2MeSH$$aNuclear Proteins: chemistry
000155832 650_2 $$2MeSH$$aNuclear Proteins: genetics
000155832 650_2 $$2MeSH$$aNuclear Proteins: metabolism
000155832 650_2 $$2MeSH$$aSchizophrenia: genetics
000155832 650_2 $$2MeSH$$aSchizophrenia: metabolism
000155832 650_2 $$2MeSH$$aTranscription Factors: chemistry
000155832 650_2 $$2MeSH$$aTranscription Factors: genetics
000155832 650_2 $$2MeSH$$aTranscription Factors: metabolism
000155832 650_2 $$2MeSH$$aVacuolar Proton-Translocating ATPases: metabolism
000155832 7001_ $$aAbentung, Andreas$$b1
000155832 7001_ $$aCera, Isabella$$b2
000155832 7001_ $$00000-0001-6220-7873$$aWahl, Nico$$b3
000155832 7001_ $$aAblinger, Cornelia$$b4
000155832 7001_ $$aBucher, Michael$$b5
000155832 7001_ $$aStefan, Eduard$$b6
000155832 7001_ $$aSprenger, Simon$$b7
000155832 7001_ $$00000-0002-8181-0253$$aTeis, David$$b8
000155832 7001_ $$0P:(DE-2719)2000047$$aFischer, Andre$$b9$$udzne
000155832 7001_ $$aLaighneach, Aodán$$b10
000155832 7001_ $$aWhitton, Laura$$b11
000155832 7001_ $$aMorris, Derek W$$b12
000155832 7001_ $$00000-0003-2682-4385$$aApostolova, Galina$$b13
000155832 7001_ $$00000-0003-2011-9415$$aDechant, Georg$$b14
000155832 773__ $$0PERI:(DE-600)1467419-1$$a10.15252/embj.2019103701$$gVol. 40, no. 3$$n3$$pe103701$$tThe EMBO journal$$v40$$x1460-2075$$y2021
000155832 8564_ $$uhttps://pub.dzne.de/record/155832/files/DZNE-2021-00992.pdf$$yOpenAccess
000155832 8564_ $$uhttps://pub.dzne.de/record/155832/files/DZNE-2021-00992.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000155832 909CO $$ooai:pub.dzne.de:155832$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000155832 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000047$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000155832 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000155832 9141_ $$y2021
000155832 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000155832 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEMBO J : 2021$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEMBO J : 2021$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000155832 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000155832 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155832 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000155832 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000155832 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000155832 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000155832 9201_ $$0I:(DE-2719)1410002$$kAG Fischer$$lEpigenetics and Systems Medicine in Neurodegenerative Diseases$$x0
000155832 980__ $$ajournal
000155832 980__ $$aVDB
000155832 980__ $$aUNRESTRICTED
000155832 980__ $$aI:(DE-2719)1410002
000155832 9801_ $$aFullTexts