001     155832
005     20240619121039.0
024 7 _ |a 10.15252/embj.2019103701
|2 doi
024 7 _ |a pmid:33319920
|2 pmid
024 7 _ |a pmc:PMC7849313
|2 pmc
024 7 _ |a 0261-4189
|2 ISSN
024 7 _ |a 1460-2075
|2 ISSN
024 7 _ |a altmetric:96035212
|2 altmetric
037 _ _ |a DZNE-2021-00992
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Feurle, Patrick
|b 0
245 _ _ |a SATB2-LEMD2 interaction links nuclear shape plasticity to regulation of cognition-related genes.
260 _ _ |a Hoboken, NJ [u.a.]
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718784750_8363
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a SATB2
|2 Other
650 _ 7 |a chromatin
|2 Other
650 _ 7 |a human cognitive ability
|2 Other
650 _ 7 |a neuronal activity
|2 Other
650 _ 7 |a nuclear envelope
|2 Other
650 _ 2 |a ATPases Associated with Diverse Cellular Activities: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Cell Nucleus: metabolism
|2 MeSH
650 _ 2 |a Cell Plasticity
|2 MeSH
650 _ 2 |a Cells, Cultured
|2 MeSH
650 _ 2 |a Cognition
|2 MeSH
650 _ 2 |a Endosomal Sorting Complexes Required for Transport: metabolism
|2 MeSH
650 _ 2 |a Gene Regulatory Networks
|2 MeSH
650 _ 2 |a HeLa Cells
|2 MeSH
650 _ 2 |a Hippocampus: cytology
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Intellectual Disability: genetics
|2 MeSH
650 _ 2 |a Intellectual Disability: metabolism
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Matrix Attachment Region Binding Proteins: chemistry
|2 MeSH
650 _ 2 |a Matrix Attachment Region Binding Proteins: genetics
|2 MeSH
650 _ 2 |a Matrix Attachment Region Binding Proteins: metabolism
|2 MeSH
650 _ 2 |a Membrane Proteins: chemistry
|2 MeSH
650 _ 2 |a Membrane Proteins: genetics
|2 MeSH
650 _ 2 |a Membrane Proteins: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Neurons: cytology
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Nuclear Envelope: metabolism
|2 MeSH
650 _ 2 |a Nuclear Proteins: chemistry
|2 MeSH
650 _ 2 |a Nuclear Proteins: genetics
|2 MeSH
650 _ 2 |a Nuclear Proteins: metabolism
|2 MeSH
650 _ 2 |a Schizophrenia: genetics
|2 MeSH
650 _ 2 |a Schizophrenia: metabolism
|2 MeSH
650 _ 2 |a Transcription Factors: chemistry
|2 MeSH
650 _ 2 |a Transcription Factors: genetics
|2 MeSH
650 _ 2 |a Transcription Factors: metabolism
|2 MeSH
650 _ 2 |a Vacuolar Proton-Translocating ATPases: metabolism
|2 MeSH
700 1 _ |a Abentung, Andreas
|b 1
700 1 _ |a Cera, Isabella
|b 2
700 1 _ |a Wahl, Nico
|0 0000-0001-6220-7873
|b 3
700 1 _ |a Ablinger, Cornelia
|b 4
700 1 _ |a Bucher, Michael
|b 5
700 1 _ |a Stefan, Eduard
|b 6
700 1 _ |a Sprenger, Simon
|b 7
700 1 _ |a Teis, David
|0 0000-0002-8181-0253
|b 8
700 1 _ |a Fischer, Andre
|0 P:(DE-2719)2000047
|b 9
|u dzne
700 1 _ |a Laighneach, Aodán
|b 10
700 1 _ |a Whitton, Laura
|b 11
700 1 _ |a Morris, Derek W
|b 12
700 1 _ |a Apostolova, Galina
|0 0000-0003-2682-4385
|b 13
700 1 _ |a Dechant, Georg
|0 0000-0003-2011-9415
|b 14
773 _ _ |a 10.15252/embj.2019103701
|g Vol. 40, no. 3
|0 PERI:(DE-600)1467419-1
|n 3
|p e103701
|t The EMBO journal
|v 40
|y 2021
|x 1460-2075
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/155832/files/DZNE-2021-00992.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/155832/files/DZNE-2021-00992.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:155832
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2000047
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO J : 2021
|d 2022-11-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EMBO J : 2021
|d 2022-11-12
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1410002
|k AG Fischer
|l Epigenetics and Systems Medicine in Neurodegenerative Diseases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21