001     156000
005     20240611120547.0
024 7 _ |a 10.7554/eLife.65786
|2 doi
024 7 _ |a pmid:33709911
|2 pmid
024 7 _ |a pmc:PMC7987346
|2 pmc
024 7 _ |a altmetric:101664283
|2 altmetric
037 _ _ |a DZNE-2021-01132
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Pofahl, Martin
|0 P:(DE-2719)9000253
|b 0
|u dzne
245 _ _ |a Synchronous activity patterns in the dentate gyrus during immobility.
260 _ _ |a Cambridge
|c 2021
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718023308_5321
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep. The properties of these activity patterns at cellular resolution, and their role in hippocampal-dependent memory processes have remained unclear. Using dual-color in vivo two-photon Ca2+ imaging, we show that in immobile mice dentate granule cells generate sparse, synchronized activity patterns associated with entorhinal cortex activation. These population events are structured and modified by changes in the environment; and they incorporate place- and speed cells. Importantly, they are more similar than expected by chance to population patterns evoked during self-motion. Using optogenetic inhibition, we show that granule cell activity is not only required during exploration, but also during immobility in order to form dentate gyrus-dependent spatial memories.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a dentate gyrus
|2 Other
650 _ 7 |a hippocampus
|2 Other
650 _ 7 |a learning & memory
|2 Other
650 _ 7 |a mouse
|2 Other
650 _ 7 |a neuroscience
|2 Other
650 _ 7 |a pattern separation
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Dentate Gyrus: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Immobilization
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Neuroimaging
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Optogenetics
|2 MeSH
700 1 _ |a Nikbakht, Negar
|b 1
700 1 _ |a Haubrich, André
|0 P:(DE-2719)2812079
|b 2
|u dzne
700 1 _ |a Nguyen, Theresa
|b 3
700 1 _ |a Masala, Nicola
|b 4
700 1 _ |a Distler, Fabian
|b 5
700 1 _ |a Braganza, Oliver
|0 0000-0001-8508-1070
|b 6
700 1 _ |a Macke, Jakob H
|0 0000-0001-5154-8912
|b 7
700 1 _ |a Ewell, Laura A
|b 8
700 1 _ |a Golcuk, Kurtulus
|b 9
700 1 _ |a Beck, Heinz
|0 P:(DE-2719)2000044
|b 10
|e Last author
|u dzne
773 _ _ |a 10.7554/eLife.65786
|g Vol. 10, p. e65786
|0 PERI:(DE-600)2687154-3
|p e65786
|t eLife
|v 10
|y 2021
|x 2050-084X
856 4 _ |u https://pub.dzne.de/record/156000/files/DZNE-2021-01132.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/156000/files/DZNE-2021-01132.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:156000
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)9000253
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-2719)2812079
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2000044
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
920 1 _ |0 I:(DE-2719)6000011
|k Bonn common
|l Bonn common
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)6000011
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21