001     156030
005     20240328115555.0
024 7 _ |a 10.1002/hbm.25393
|2 doi
024 7 _ |a pmid:33638213
|2 pmid
024 7 _ |a pmc:PMC8090788
|2 pmc
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a altmetric:100970449
|2 altmetric
037 _ _ |a DZNE-2021-01162
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ruppert, Marina C
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The default mode network and cognition in Parkinson's disease: A multimodal resting-state network approach.
260 _ _ |a New York, NY
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1711545923_24243
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Involvement of the default mode network (DMN) in cognitive symptoms of Parkinson's disease (PD) has been reported by resting-state functional MRI (rsfMRI) studies. However, the relation to metabolic measures obtained by [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) is largely unknown. We applied multimodal resting-state network analysis to clarify the association between intrinsic metabolic and functional connectivity abnormalities within the DMN and their significance for cognitive symptoms in PD. PD patients were classified into normal cognition (n = 36) and mild cognitive impairment (MCI; n = 12). The DMN was identified by applying an independent component analysis to FDG-PET and rsfMRI data of a matched subset (16 controls and 16 PD patients) of the total cohort. Besides metabolic activity, metabolic and functional connectivity within the DMN were compared between the patients' groups and healthy controls (n = 16). Glucose metabolism was significantly reduced in all DMN nodes in both patient groups compared to controls, with the lowest uptake in PD-MCI (p < .05). Increased metabolic and functional connectivity along fronto-parietal connections was identified in PD-MCI patients compared to controls and unimpaired patients. Functional connectivity negatively correlated with cognitive composite z-scores in patients (r = -.43, p = .005). The current study clarifies the commonalities of metabolic and hemodynamic measures of brain network activity and their individual significance for cognitive symptoms in PD, highlighting the added value of multimodal resting-state network approaches for identifying prospective biomarkers.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Parkinson's disease
|2 Other
650 _ 7 |a [18F]-FDG-PET
|2 Other
650 _ 7 |a default mode network
|2 Other
650 _ 7 |a metabolic covariance
|2 Other
650 _ 7 |a mild cognitive impairment
|2 Other
650 _ 7 |a resting-state fMRI
|2 Other
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Cerebral Cortex: diagnostic imaging
|2 MeSH
650 _ 2 |a Cerebral Cortex: metabolism
|2 MeSH
650 _ 2 |a Cerebral Cortex: physiopathology
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: diagnostic imaging
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: etiology
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: metabolism
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: physiopathology
|2 MeSH
650 _ 2 |a Connectome
|2 MeSH
650 _ 2 |a Default Mode Network: diagnostic imaging
|2 MeSH
650 _ 2 |a Default Mode Network: metabolism
|2 MeSH
650 _ 2 |a Default Mode Network: physiopathology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Multimodal Imaging
|2 MeSH
650 _ 2 |a Parkinson Disease: complications
|2 MeSH
650 _ 2 |a Parkinson Disease: diagnostic imaging
|2 MeSH
650 _ 2 |a Parkinson Disease: metabolism
|2 MeSH
650 _ 2 |a Parkinson Disease: physiopathology
|2 MeSH
650 _ 2 |a Positron-Emission Tomography
|2 MeSH
700 1 _ |a Greuel, Andrea
|b 1
700 1 _ |a Freigang, Julia
|b 2
700 1 _ |a Tahmasian, Masoud
|b 3
700 1 _ |a Maier, Franziska
|b 4
700 1 _ |a Hammes, Jochen
|b 5
700 1 _ |a Eimeren, Thilo
|0 P:(DE-2719)2812285
|b 6
|u dzne
700 1 _ |a Timmermann, Lars
|b 7
700 1 _ |a Tittgemeyer, Marc
|b 8
700 1 _ |a Drzezga, Alexander
|0 P:(DE-2719)2811239
|b 9
|u dzne
700 1 _ |a Eggers, Carsten
|b 10
773 _ _ |a 10.1002/hbm.25393
|g Vol. 42, no. 8, p. 2623 - 2641
|0 PERI:(DE-600)1492703-2
|n 8
|p 2623 - 2641
|t Human brain mapping
|v 42
|y 2021
|x 1097-0193
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/156030/files/DZNE-2021-01162.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/156030/files/DZNE-2021-01162.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:156030
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812285
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2811239
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b HUM BRAIN MAPP : 2021
|d 2022-11-22
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
920 1 _ |0 I:(DE-2719)1011202
|k AG Boecker
|l Positron Emissions Tomography (PET)
|x 0
920 1 _ |0 I:(DE-2719)1011101
|k Patient Studies Bonn
|l Patient Studies Bonn
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011202
980 _ _ |a I:(DE-2719)1011101
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21