000157779 001__ 157779
000157779 005__ 20230915092355.0
000157779 0247_ $$2doi$$a10.3174/ajnr.A7042
000157779 0247_ $$2pmid$$apmid:33664113
000157779 0247_ $$2pmc$$apmc:PMC8115367
000157779 0247_ $$2ISSN$$a0195-6108
000157779 0247_ $$2ISSN$$a1936-959X
000157779 0247_ $$2altmetric$$aaltmetric:101357298
000157779 037__ $$aDZNE-2021-01236
000157779 041__ $$aEnglish
000157779 082__ $$a610
000157779 1001_ $$00000-0002-9152-4445$$aRaposo, N.$$b0
000157779 245__ $$aPeak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy.
000157779 260__ $$aOak Brook, Ill.$$bSoc.$$c2021
000157779 3367_ $$2DRIVER$$aarticle
000157779 3367_ $$2DataCite$$aOutput Types/Journal article
000157779 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1632300983_31142
000157779 3367_ $$2BibTeX$$aARTICLE
000157779 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000157779 3367_ $$00$$2EndNote$$aJournal Article
000157779 520__ $$aWhole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.
000157779 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000157779 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000157779 650_7 $$2NLM Chemicals$$aBiomarkers
000157779 650_2 $$2MeSH$$aAged
000157779 650_2 $$2MeSH$$aAged, 80 and over
000157779 650_2 $$2MeSH$$aBiomarkers
000157779 650_2 $$2MeSH$$aCerebral Amyloid Angiopathy: diagnostic imaging
000157779 650_2 $$2MeSH$$aCerebral Amyloid Angiopathy: psychology
000157779 650_2 $$2MeSH$$aCerebral Small Vessel Diseases: diagnostic imaging
000157779 650_2 $$2MeSH$$aCognition
000157779 650_2 $$2MeSH$$aCognitive Dysfunction: diagnostic imaging
000157779 650_2 $$2MeSH$$aCognitive Dysfunction: psychology
000157779 650_2 $$2MeSH$$aDiffusion Magnetic Resonance Imaging
000157779 650_2 $$2MeSH$$aDiffusion Tensor Imaging: methods
000157779 650_2 $$2MeSH$$aFemale
000157779 650_2 $$2MeSH$$aHumans
000157779 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000157779 650_2 $$2MeSH$$aMale
000157779 650_2 $$2MeSH$$aNeuroimaging
000157779 650_2 $$2MeSH$$aPsychomotor Performance
000157779 650_2 $$2MeSH$$aReaction Time
000157779 7001_ $$00000-0001-6604-0660$$aZanon Zotin, M. C.$$b1
000157779 7001_ $$00000-0003-2587-8883$$aSchoemaker, D.$$b2
000157779 7001_ $$00000-0003-3851-937X$$aXiong, L.$$b3
000157779 7001_ $$00000-0001-7287-9227$$aFotiadis, P.$$b4
000157779 7001_ $$00000-0001-5891-337X$$aCharidimou, A.$$b5
000157779 7001_ $$00000-0001-9976-2459$$aPasi, M.$$b6
000157779 7001_ $$00000-0001-8422-9205$$aBoulouis, G.$$b7
000157779 7001_ $$00000-0001-5723-9109$$aSchwab, K.$$b8
000157779 7001_ $$0P:(DE-2719)2812331$$aSchirmer, Markus Dieter$$b9$$udzne
000157779 7001_ $$0P:(DE-2719)9000066$$aEtherton, Mark R.$$b10$$udzne
000157779 7001_ $$00000-0002-2169-4457$$aGurol, M. E.$$b11
000157779 7001_ $$00000-0003-1792-8887$$aGreenberg, S. M.$$b12
000157779 7001_ $$00000-0003-2302-3136$$aDuering, M.$$b13
000157779 7001_ $$0P:(DE-2719)2811836$$aViswanathan, Vivekanandhan$$b14$$udzne
000157779 773__ $$0PERI:(DE-600)2025541-X$$a10.3174/ajnr.A7042$$gVol. 42, no. 5, p. 875 - 881$$n5$$p875 - 881$$tAmerican journal of neuroradiology$$v42$$x1936-959X$$y2021
000157779 909CO $$ooai:pub.dzne.de:157779$$pVDB
000157779 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812331$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000157779 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9000066$$aExternal Institute$$b10$$kExtern
000157779 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2811836$$aExternal Institute$$b14$$kExtern
000157779 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000157779 9141_ $$y2021
000157779 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000157779 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000157779 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000157779 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM J NEURORADIOL : 2021$$d2022-11-16
000157779 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000157779 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000157779 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000157779 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000157779 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-16
000157779 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-16
000157779 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-16
000157779 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-16
000157779 9201_ $$0I:(DE-2719)1012001$$kAG Breteler 1$$lPopulation Health Sciences$$x0
000157779 980__ $$ajournal
000157779 980__ $$aVDB
000157779 980__ $$aI:(DE-2719)1012001
000157779 980__ $$aUNRESTRICTED