001     157779
005     20230915092355.0
024 7 _ |a 10.3174/ajnr.A7042
|2 doi
024 7 _ |a pmid:33664113
|2 pmid
024 7 _ |a pmc:PMC8115367
|2 pmc
024 7 _ |a 0195-6108
|2 ISSN
024 7 _ |a 1936-959X
|2 ISSN
024 7 _ |a altmetric:101357298
|2 altmetric
037 _ _ |a DZNE-2021-01236
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Raposo, N.
|0 0000-0002-9152-4445
|b 0
245 _ _ |a Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy.
260 _ _ |a Oak Brook, Ill.
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1632300983_31142
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
650 _ 2 |a Biomarkers
|2 MeSH
650 _ 2 |a Cerebral Amyloid Angiopathy: diagnostic imaging
|2 MeSH
650 _ 2 |a Cerebral Amyloid Angiopathy: psychology
|2 MeSH
650 _ 2 |a Cerebral Small Vessel Diseases: diagnostic imaging
|2 MeSH
650 _ 2 |a Cognition
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: diagnostic imaging
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: psychology
|2 MeSH
650 _ 2 |a Diffusion Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Diffusion Tensor Imaging: methods
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Neuroimaging
|2 MeSH
650 _ 2 |a Psychomotor Performance
|2 MeSH
650 _ 2 |a Reaction Time
|2 MeSH
700 1 _ |a Zanon Zotin, M. C.
|0 0000-0001-6604-0660
|b 1
700 1 _ |a Schoemaker, D.
|0 0000-0003-2587-8883
|b 2
700 1 _ |a Xiong, L.
|0 0000-0003-3851-937X
|b 3
700 1 _ |a Fotiadis, P.
|0 0000-0001-7287-9227
|b 4
700 1 _ |a Charidimou, A.
|0 0000-0001-5891-337X
|b 5
700 1 _ |a Pasi, M.
|0 0000-0001-9976-2459
|b 6
700 1 _ |a Boulouis, G.
|0 0000-0001-8422-9205
|b 7
700 1 _ |a Schwab, K.
|0 0000-0001-5723-9109
|b 8
700 1 _ |a Schirmer, Markus Dieter
|0 P:(DE-2719)2812331
|b 9
|u dzne
700 1 _ |a Etherton, Mark R.
|0 P:(DE-2719)9000066
|b 10
|u dzne
700 1 _ |a Gurol, M. E.
|0 0000-0002-2169-4457
|b 11
700 1 _ |a Greenberg, S. M.
|0 0000-0003-1792-8887
|b 12
700 1 _ |a Duering, M.
|0 0000-0003-2302-3136
|b 13
700 1 _ |a Viswanathan, Vivekanandhan
|0 P:(DE-2719)2811836
|b 14
|u dzne
773 _ _ |a 10.3174/ajnr.A7042
|g Vol. 42, no. 5, p. 875 - 881
|0 PERI:(DE-600)2025541-X
|n 5
|p 875 - 881
|t American journal of neuroradiology
|v 42
|y 2021
|x 1936-959X
909 C O |o oai:pub.dzne.de:157779
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2812331
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-2719)9000066
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-2719)2811836
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J NEURORADIOL : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-16
920 1 _ |0 I:(DE-2719)1012001
|k AG Breteler 1
|l Population Health Sciences
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1012001
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21