| Home > Publications Database > Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy. > print |
| 001 | 157779 | ||
| 005 | 20230915092355.0 | ||
| 024 | 7 | _ | |a 10.3174/ajnr.A7042 |2 doi |
| 024 | 7 | _ | |a pmid:33664113 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC8115367 |2 pmc |
| 024 | 7 | _ | |a 0195-6108 |2 ISSN |
| 024 | 7 | _ | |a 1936-959X |2 ISSN |
| 024 | 7 | _ | |a altmetric:101357298 |2 altmetric |
| 037 | _ | _ | |a DZNE-2021-01236 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Raposo, N. |0 0000-0002-9152-4445 |b 0 |
| 245 | _ | _ | |a Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy. |
| 260 | _ | _ | |a Oak Brook, Ill. |c 2021 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1632300983_31142 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population. |
| 536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a Biomarkers |2 NLM Chemicals |
| 650 | _ | 2 | |a Aged |2 MeSH |
| 650 | _ | 2 | |a Aged, 80 and over |2 MeSH |
| 650 | _ | 2 | |a Biomarkers |2 MeSH |
| 650 | _ | 2 | |a Cerebral Amyloid Angiopathy: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Cerebral Amyloid Angiopathy: psychology |2 MeSH |
| 650 | _ | 2 | |a Cerebral Small Vessel Diseases: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Cognition |2 MeSH |
| 650 | _ | 2 | |a Cognitive Dysfunction: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Cognitive Dysfunction: psychology |2 MeSH |
| 650 | _ | 2 | |a Diffusion Magnetic Resonance Imaging |2 MeSH |
| 650 | _ | 2 | |a Diffusion Tensor Imaging: methods |2 MeSH |
| 650 | _ | 2 | |a Female |2 MeSH |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Image Processing, Computer-Assisted: methods |2 MeSH |
| 650 | _ | 2 | |a Male |2 MeSH |
| 650 | _ | 2 | |a Neuroimaging |2 MeSH |
| 650 | _ | 2 | |a Psychomotor Performance |2 MeSH |
| 650 | _ | 2 | |a Reaction Time |2 MeSH |
| 700 | 1 | _ | |a Zanon Zotin, M. C. |0 0000-0001-6604-0660 |b 1 |
| 700 | 1 | _ | |a Schoemaker, D. |0 0000-0003-2587-8883 |b 2 |
| 700 | 1 | _ | |a Xiong, L. |0 0000-0003-3851-937X |b 3 |
| 700 | 1 | _ | |a Fotiadis, P. |0 0000-0001-7287-9227 |b 4 |
| 700 | 1 | _ | |a Charidimou, A. |0 0000-0001-5891-337X |b 5 |
| 700 | 1 | _ | |a Pasi, M. |0 0000-0001-9976-2459 |b 6 |
| 700 | 1 | _ | |a Boulouis, G. |0 0000-0001-8422-9205 |b 7 |
| 700 | 1 | _ | |a Schwab, K. |0 0000-0001-5723-9109 |b 8 |
| 700 | 1 | _ | |a Schirmer, Markus Dieter |0 P:(DE-2719)2812331 |b 9 |u dzne |
| 700 | 1 | _ | |a Etherton, Mark R. |0 P:(DE-2719)9000066 |b 10 |u dzne |
| 700 | 1 | _ | |a Gurol, M. E. |0 0000-0002-2169-4457 |b 11 |
| 700 | 1 | _ | |a Greenberg, S. M. |0 0000-0003-1792-8887 |b 12 |
| 700 | 1 | _ | |a Duering, M. |0 0000-0003-2302-3136 |b 13 |
| 700 | 1 | _ | |a Viswanathan, Vivekanandhan |0 P:(DE-2719)2811836 |b 14 |u dzne |
| 773 | _ | _ | |a 10.3174/ajnr.A7042 |g Vol. 42, no. 5, p. 875 - 881 |0 PERI:(DE-600)2025541-X |n 5 |p 875 - 881 |t American journal of neuroradiology |v 42 |y 2021 |x 1936-959X |
| 909 | C | O | |o oai:pub.dzne.de:157779 |p VDB |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 9 |6 P:(DE-2719)2812331 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-2719)9000066 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-2719)2811836 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b AM J NEURORADIOL : 2021 |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-16 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-16 |
| 920 | 1 | _ | |0 I:(DE-2719)1012001 |k AG Breteler 1 |l Population Health Sciences |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-2719)1012001 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|