001     162632
005     20240227115125.0
024 7 _ |a 10.1186/s40035-021-00241-6
|2 doi
024 7 _ |a pmid:34059131
|2 pmid
024 7 _ |a pmc:PMC8168014
|2 pmc
024 7 _ |a 2047-9158
|2 ISSN
024 7 _ |a 2096-6466
|2 ISSN
024 7 _ |a altmetric:106784931
|2 altmetric
037 _ _ |a DZNE-2021-01328
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Bayer, David
|b 0
245 _ _ |a Disruption of orbitofrontal-hypothalamic projections in a murine ALS model and in human patients.
260 _ _ |a London
|c 2021
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709023770_12962
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY
520 _ _ |a Increased catabolism has recently been recognized as a clinical manifestation of amyotrophic lateral sclerosis (ALS). The hypothalamic systems have been shown to be involved in the metabolic dysfunction in ALS, but the exact extent of hypothalamic circuit alterations in ALS is yet to be determined. Here we explored the integrity of large-scale cortico-hypothalamic circuits involved in energy homeostasis in murine models and in ALS patients.The rAAV2-based large-scale projection mapping and image analysis pipeline based on Wholebrain and Ilastik software suites were used to identify and quantify projections from the forebrain to the lateral hypothalamus in the SOD1(G93A) ALS mouse model (hypermetabolic) and the FusΔNLS ALS mouse model (normo-metabolic). 3 T diffusion tensor imaging (DTI)-magnetic resonance imaging (MRI) was performed on 83 ALS and 65 control cases to investigate cortical projections to the lateral hypothalamus (LHA) in ALS.Symptomatic SOD1(G93A) mice displayed an expansion of projections from agranular insula, ventrolateral orbitofrontal and secondary motor cortex to the LHA. These findings were reproduced in an independent cohort by using a different analytic approach. In contrast, in the FusΔNLS ALS mouse model hypothalamic inputs from insula and orbitofrontal cortex were maintained while the projections from motor cortex were lost. The DTI-MRI data confirmed the disruption of the orbitofrontal-hypothalamic tract in ALS patients.This study provides converging murine and human data demonstrating the selective structural disruption of hypothalamic inputs in ALS as a promising factor contributing to the origin of the hypermetabolic phenotype.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Agranular insula
|2 Other
650 _ 7 |a Amyotrophic lateral sclerosis
|2 Other
650 _ 7 |a Hypermetabolism
|2 Other
650 _ 7 |a Lateral hypothalamus
|2 Other
650 _ 7 |a Orbitofrontal cortex
|2 Other
650 _ 7 |a rAAV2
|2 Other
650 _ 2 |a Amyotrophic Lateral Sclerosis: diagnostic imaging
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: pathology
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Brain Mapping
|2 MeSH
650 _ 2 |a Case-Control Studies
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
650 _ 2 |a Diffusion Tensor Imaging
|2 MeSH
650 _ 2 |a Energy Metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Hypothalamus: diagnostic imaging
|2 MeSH
650 _ 2 |a Hypothalamus: pathology
|2 MeSH
650 _ 2 |a Immunohistochemistry
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Motor Cortex: growth & development
|2 MeSH
650 _ 2 |a Motor Cortex: pathology
|2 MeSH
650 _ 2 |a Neural Pathways: diagnostic imaging
|2 MeSH
650 _ 2 |a Neural Pathways: pathology
|2 MeSH
650 _ 2 |a Prefrontal Cortex: diagnostic imaging
|2 MeSH
650 _ 2 |a Prefrontal Cortex: pathology
|2 MeSH
650 _ 2 |a RNA-Binding Protein FUS: genetics
|2 MeSH
650 _ 2 |a Superoxide Dismutase-1: genetics
|2 MeSH
700 1 _ |a Antonucci, Stefano
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Müller, Hans-Peter
|b 2
700 1 _ |a Saad, Rami
|b 3
700 1 _ |a Dupuis, Luc
|b 4
700 1 _ |a Rasche, Volker
|b 5
700 1 _ |a Böckers, Tobias
|0 P:(DE-2719)2812855
|b 6
700 1 _ |a Ludolph, Albert
|0 P:(DE-2719)2812633
|b 7
700 1 _ |a Kassubek, Jan
|0 P:(DE-2719)9001967
|b 8
|u dzne
700 1 _ |a Roselli, Francesco
|0 P:(DE-2719)2812851
|b 9
|e Last author
773 _ _ |a 10.1186/s40035-021-00241-6
|g Vol. 10, no. 1, p. 17
|0 PERI:(DE-600)2653701-1
|n 1
|p 17
|t Translational neurodegeneration
|v 10
|y 2021
|x 2047-9158
856 4 _ |u https://pub.dzne.de/record/162632/files/DZNE-2021-01328.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/162632/files/DZNE-2021-01328.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:162632
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812855
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2812633
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9001967
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2812851
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRANSL NEURODEGENER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-14T16:20:36Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-14T16:20:36Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-14T16:20:36Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b TRANSL NEURODEGENER : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1910001
|k AG Roselli
|l Metabolic Changes in Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1910002
|k AG Böckers
|l Translational Protein Biochemistry
|x 1
920 1 _ |0 I:(DE-2719)5000077
|k Clinical Study Center Ulm
|l Clinical Study Center Ulm
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1910001
980 _ _ |a I:(DE-2719)1910002
980 _ _ |a I:(DE-2719)5000077
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21