000162700 001__ 162700
000162700 005__ 20250604100729.0
000162700 0247_ $$2doi$$a10.1002/glia.24077
000162700 0247_ $$2pmid$$apmid:34427354
000162700 0247_ $$2ISSN$$a0894-1491
000162700 0247_ $$2ISSN$$a1098-1136
000162700 0247_ $$2altmetric$$aaltmetric:112324279
000162700 037__ $$aDZNE-2021-01357
000162700 041__ $$aEnglish
000162700 082__ $$a610
000162700 1001_ $$00000-0002-1153-0440$$aJoshi, Pranav$$b0
000162700 245__ $$aDifferential interaction with TREM2 modulates microglial uptake of modified Aβ species.
000162700 260__ $$aBognor Regis [u.a.]$$bWiley-Liss$$c2021
000162700 3367_ $$2DRIVER$$aarticle
000162700 3367_ $$2DataCite$$aOutput Types/Journal article
000162700 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748938354_19908
000162700 3367_ $$2BibTeX$$aARTICLE
000162700 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000162700 3367_ $$00$$2EndNote$$aJournal Article
000162700 520__ $$aRare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid β peptides (Aβ). Aβ peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aβ variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aβ affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aβ, and that phosphorylation of Aβ increases this interaction. Phosphorylation of Aβ also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aβ variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aβ species in preclinical models of Alzheimer's disease.
000162700 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000162700 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x1
000162700 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x2
000162700 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000162700 650_7 $$2Other$$aAlzheimer's disease
000162700 650_7 $$2Other$$aFTD mutation
000162700 650_7 $$2Other$$aTREM2
000162700 650_7 $$2Other$$aamyloid β
000162700 650_7 $$2Other$$aphosphorylation
000162700 650_7 $$2Other$$apost-translational modification
000162700 650_2 $$2MeSH$$aAlzheimer Disease: genetics
000162700 650_2 $$2MeSH$$aAlzheimer Disease: metabolism
000162700 650_2 $$2MeSH$$aAmyloid beta-Peptides: metabolism
000162700 650_2 $$2MeSH$$aAmyloid beta-Protein Precursor: genetics
000162700 650_2 $$2MeSH$$aAmyloid beta-Protein Precursor: metabolism
000162700 650_2 $$2MeSH$$aAnimals
000162700 650_2 $$2MeSH$$aDisease Models, Animal
000162700 650_2 $$2MeSH$$aMembrane Glycoproteins: genetics
000162700 650_2 $$2MeSH$$aMembrane Glycoproteins: metabolism
000162700 650_2 $$2MeSH$$aMice
000162700 650_2 $$2MeSH$$aMice, Transgenic
000162700 650_2 $$2MeSH$$aMicroglia: metabolism
000162700 650_2 $$2MeSH$$aReceptors, Immunologic: genetics
000162700 650_2 $$2MeSH$$aReceptors, Immunologic: metabolism
000162700 7001_ $$00000-0001-8594-100X$$aRiffel, Florian$$b1
000162700 7001_ $$aSatoh, Kanayo$$b2
000162700 7001_ $$aEnomoto, Masahiro$$b3
000162700 7001_ $$aQamar, Seema$$b4
000162700 7001_ $$0P:(DE-2719)9000371$$aScheiblich, Hannah$$b5$$udzne
000162700 7001_ $$0P:(DE-2719)9000326$$aVillacampa, Nàdia$$b6$$udzne
000162700 7001_ $$00000-0002-2792-7047$$aKumar, Sathish$$b7
000162700 7001_ $$aTheil, Sandra$$b8
000162700 7001_ $$00000-0001-5807-190X$$aParhizkar, Samira$$b9
000162700 7001_ $$0P:(DE-2719)2202037$$aHaass, Christian$$b10$$udzne
000162700 7001_ $$0P:(DE-2719)2000008$$aHeneka, Michael$$b11$$udzne
000162700 7001_ $$aFraser, Paul E$$b12
000162700 7001_ $$aSt George-Hyslop, Peter$$b13
000162700 7001_ $$0P:(DE-HGF)0$$aWalter, Jochen$$b14
000162700 773__ $$0PERI:(DE-600)1474828-9$$a10.1002/glia.24077$$gVol. 69, no. 12, p. 2917 - 2932$$n12$$p2917 - 2932$$tGlia$$v69$$x1098-1136$$y2021
000162700 8564_ $$uhttps://pub.dzne.de/record/162700/files/DZNE-2021-01357.pdf$$yOpenAccess
000162700 8564_ $$uhttps://pub.dzne.de/record/162700/files/DZNE-2021-01357.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000162700 909CO $$ooai:pub.dzne.de:162700$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000162700 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000371$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000162700 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000326$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000162700 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2202037$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000162700 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000008$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000162700 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000162700 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x1
000162700 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x2
000162700 9141_ $$y2021
000162700 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000162700 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000162700 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-08
000162700 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000162700 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLIA : 2021$$d2022-11-08
000162700 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000162700 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000162700 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000162700 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-08
000162700 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000162700 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000162700 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLIA : 2021$$d2022-11-08
000162700 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000162700 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-08$$wger
000162700 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000162700 9201_ $$0I:(DE-2719)1011301$$kBiomarker$$lInterventional Trials and Biomarkers in Neurodegenerative Diseases$$x0
000162700 9201_ $$0I:(DE-2719)1011303$$kAG Heneka$$lNeuroinflammation, Biomarker$$x1
000162700 9201_ $$0I:(DE-2719)1110007$$kAG Haass$$lMolecular Neurodegeneration$$x2
000162700 9201_ $$0I:(DE-2719)1030028$$kTech Transfer$$lTechnology Transfer and Industry Collaborations Unit$$x3
000162700 980__ $$ajournal
000162700 980__ $$aVDB
000162700 980__ $$aI:(DE-2719)1011301
000162700 980__ $$aI:(DE-2719)1011303
000162700 980__ $$aI:(DE-2719)1110007
000162700 980__ $$aI:(DE-2719)1030028
000162700 980__ $$aUNRESTRICTED
000162700 9801_ $$aFullTexts