001     162710
005     20240611120547.0
024 7 _ |a 10.1186/s13024-021-00471-2
|2 doi
024 7 _ |a pmid:34380535
|2 pmid
024 7 _ |a pmc:PMC8356412
|2 pmc
024 7 _ |a altmetric:111657675
|2 altmetric
037 _ _ |a DZNE-2021-01367
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Barth, Melanie
|0 P:(DE-2719)2812097
|b 0
|e First author
|u dzne
245 _ _ |a Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures.
260 _ _ |a London
|c 2021
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718022208_5320
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY
520 _ _ |a Proteopathic brain lesions are a hallmark of many age-related neurodegenerative diseases including synucleinopathies and develop at least a decade before the onset of clinical symptoms. Thus, understanding of the initiation and propagation of such lesions is key for developing therapeutics to delay or halt disease progression.Alpha-synuclein (αS) inclusions were induced in long-term murine and human slice cultures by seeded aggregation. An αS seed-recognizing human antibody was tested for blocking seeding and/or spreading of the αS lesions. Release of neurofilament light chain (NfL) into the culture medium was assessed.To study initial stages of α-synucleinopathies, we induced αS inclusions in murine hippocampal slice cultures by seeded aggregation. Induction of αS inclusions in neurons was apparent as early as 1week post-seeding, followed by the occurrence of microglial inclusions in vicinity of the neuronal lesions at 2-3 weeks. The amount of αS inclusions was dependent on the type of αS seed and on the culture's genetic background (wildtype vs A53T-αS genotype). Formation of αS inclusions could be monitored by neurofilament light chain protein release into the culture medium, a fluid biomarker of neurodegeneration commonly used in clinical settings. Local microinjection of αS seeds resulted in spreading of αS inclusions to neuronally connected hippocampal subregions, and seeding and spreading could be inhibited by an αS seed-recognizing human antibody. We then applied parameters of the murine cultures to surgical resection-derived adult human long-term neocortical slice cultures from 22 to 61-year-old donors. Similarly, in these human slice cultures, proof-of-principle induction of αS lesions was achieved at 1week post-seeding in combination with viral A53T-αS expressions.The successful translation of these brain cultures from mouse to human with the first reported induction of human αS lesions in a true adult human brain environment underlines the potential of this model to study proteopathic lesions in intact mouse and now even aged human brain environments.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Alpha-synuclein
|2 Other
650 _ 7 |a Microglia
|2 Other
650 _ 7 |a Neurofilament light chain
|2 Other
650 _ 7 |a Slice culture
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Inclusion Bodies: pathology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Microglia: metabolism
|2 MeSH
650 _ 2 |a Microglia: pathology
|2 MeSH
650 _ 2 |a Neurofilament Proteins: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurons: pathology
|2 MeSH
650 _ 2 |a Organ Culture Techniques: methods
|2 MeSH
650 _ 2 |a Synucleinopathies
|2 MeSH
650 _ 2 |a alpha-Synuclein: toxicity
|2 MeSH
700 1 _ |a Bacioglu, Mehtap
|0 P:(DE-2719)2810940
|b 1
|u dzne
700 1 _ |a Schwarz, Niklas
|b 2
700 1 _ |a Novotny, Renata
|0 P:(DE-2719)9000235
|b 3
|u dzne
700 1 _ |a Brandes, Janine
|b 4
700 1 _ |a Welzer, Marc
|0 P:(DE-2719)9000948
|b 5
|u dzne
700 1 _ |a Mazzitelli, Sonia
|0 P:(DE-2719)2812690
|b 6
|u dzne
700 1 _ |a Häsler, Lisa
|0 P:(DE-2719)2811581
|b 7
|u dzne
700 1 _ |a Schweighauser, Manuel
|0 P:(DE-2719)9000294
|b 8
|u dzne
700 1 _ |a Wuttke, Thomas V
|b 9
700 1 _ |a Kronenberg-Versteeg, Deborah
|0 P:(DE-2719)9001451
|b 10
|u dzne
700 1 _ |a Fog, Karina
|b 11
700 1 _ |a Ambjørn, Malene
|b 12
700 1 _ |a Alik, Ania
|b 13
700 1 _ |a Melki, Ronald
|b 14
700 1 _ |a Kahle, Philipp
|0 P:(DE-2719)2810803
|b 15
|u dzne
700 1 _ |a Shimshek, Derya R
|b 16
700 1 _ |a Koch, Henner
|b 17
700 1 _ |a Jucker, Mathias
|0 P:(DE-2719)2000010
|b 18
|u dzne
700 1 _ |a Tanriöver, Gaye
|0 P:(DE-2719)2812508
|b 19
|e Last author
|u dzne
773 _ _ |a 10.1186/s13024-021-00471-2
|g Vol. 16, no. 1, p. 54
|0 PERI:(DE-600)2244557-2
|n 1
|p 54
|t Molecular neurodegeneration
|v 16
|y 2021
|x 1750-1326
856 4 _ |u https://pub.dzne.de/record/162710/files/DZNE-2021-01367.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/162710/files/DZNE-2021-01367.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:162710
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812097
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810940
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000235
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9000948
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812690
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2811581
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9000294
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9001451
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2810803
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2000010
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 19
|6 P:(DE-2719)2812508
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 1
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL NEURODEGENER : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-24T06:30:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-24T06:30:04Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-24T06:30:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b MOL NEURODEGENER : 2021
|d 2022-11-23
920 1 _ |0 I:(DE-2719)1210001
|k AG Jucker
|l Cell Biology of Neurological Diseases
|x 0
920 1 _ |0 I:(DE-2719)1210002
|k AG Heutink
|l Genome Biology of Neurodegenerative Diseases
|x 1
920 1 _ |0 I:(DE-2719)1210000-4
|k AG Kahle
|l Functional Neurogenetics
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1210001
980 _ _ |a I:(DE-2719)1210002
980 _ _ |a I:(DE-2719)1210000-4
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21