001     162711
005     20240320115514.0
024 7 _ |a 10.1002/glia.24070
|2 doi
024 7 _ |a pmid:34388285
|2 pmid
024 7 _ |a 0894-1491
|2 ISSN
024 7 _ |a 1098-1136
|2 ISSN
024 7 _ |a altmetric:111779930
|2 altmetric
037 _ _ |a DZNE-2021-01368
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Müller, Franziska E
|0 0000-0003-0525-0714
|b 0
245 _ _ |a Elucidating regulators of astrocytic Ca2+ signaling via multi-threshold event detection (MTED).
260 _ _ |a Bognor Regis [u.a.]
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654856381_23357
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY-NC)
520 _ _ |a Recent achievements in indicator optimization and imaging techniques promote the advancement of functional imaging to decipher complex signaling processes in living cells, such as Ca2+ activity patterns. Astrocytes are important regulators of the brain network and well known for their highly complex morphology and spontaneous Ca2+ activity. However, the astrocyte community is lacking standardized methods to analyze and interpret Ca2+ activity recordings, hindering global comparisons. Here, we present a biophysically-based analytical concept for deciphering the complex spatio-temporal changes of Ca2+ biosensor fluorescence for understanding the underlying signaling mechanisms. We developed a pixel-based multi-threshold event detection (MTED) analysis of multidimensional data, which accounts for signal strength as an additional signaling dimension and provides the experimenter with a comprehensive toolbox for a differentiated and in-depth characterization of fluorescence signals. MTED was validated by analyzing astrocytic Ca2+ activity across Ca2+ indicators, imaging setups, and model systems from primary cell culture to awake, head-fixed mice. We identified extended Ca2+ activity at 25°C compared to 37°C physiological body temperature and dissected how neuronal activity shapes long-lasting astrocytic Ca2+ activity. Our MTED strategy, as a parameter-free approach, is easily transferrable to other fluorescent indicators and biosensors and embraces the additional dimensionality of signaling activity strength. It will also advance the definition of standardized procedures and parameters to improve comparability of research data and reports.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Ca2+
|2 Other
650 _ 7 |a GCaMP
|2 Other
650 _ 7 |a MTED
|2 Other
650 _ 7 |a astrocyte
|2 Other
650 _ 7 |a biosensor
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Astrocytes: metabolism
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Calcium: metabolism
|2 MeSH
650 _ 2 |a Calcium Signaling: physiology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
700 1 _ |a Cherkas, Volodymyr
|b 1
700 1 _ |a Stopper, Gebhard
|0 0000-0003-2496-4755
|b 2
700 1 _ |a Caudal, Laura C
|0 0000-0003-2165-281X
|b 3
700 1 _ |a Stopper, Laura
|0 0000-0002-9648-6222
|b 4
700 1 _ |a Kirchhoff, Frank
|0 0000-0002-2324-2761
|b 5
700 1 _ |a Henneberger, Christian
|0 P:(DE-2719)2811625
|b 6
|u dzne
700 1 _ |a Ponimaskin, Evgeni G
|0 0000-0002-4570-5130
|b 7
700 1 _ |a Zeug, Andre
|0 0000-0001-9858-5841
|b 8
773 _ _ |a 10.1002/glia.24070
|g Vol. 69, no. 12, p. 2798 - 2811
|0 PERI:(DE-600)1474828-9
|n 12
|p 2798 - 2811
|t Glia
|v 69
|y 2021
|x 1098-1136
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/162711/files/DZNE-2021-01368.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/162711/files/DZNE-2021-01368.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:162711
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2811625
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GLIA : 2021
|d 2022-11-08
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GLIA : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
920 1 _ |0 I:(DE-2719)1013029
|k AG Henneberger
|l Role of astrocytes and extracellular matrix in signal transmission to the brain
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013029
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21