001     162724
005     20250523100555.0
024 7 _ |a 10.1016/j.neuroimage.2021.118464
|2 doi
024 7 _ |a pmid:34389442
|2 pmid
024 7 _ |a pmc:PMC8473894
|2 pmc
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a altmetric:111630964
|2 altmetric
037 _ _ |a DZNE-2021-01381
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Estrada Leon, Edgar Santiago
|0 P:(DE-2719)2812449
|b 0
|e First author
|u dzne
245 _ _ |a Automated olfactory bulb segmentation on high resolutional T2-weighted MRI.
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747926282_14718
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY
520 _ _ |a The neuroimage analysis community has neglected the automated segmentation of the olfactory bulb (OB) despite its crucial role in olfactory function. The lack of an automatic processing method for the OB can be explained by its challenging properties (small size, location, and poor visibility on traditional MRI scans). Nonetheless, recent advances in MRI acquisition techniques and resolution have allowed raters to generate more reliable manual annotations. Furthermore, the high accuracy of deep learning methods for solving semantic segmentation problems provides us with an option to reliably assess even small structures. In this work, we introduce a novel, fast, and fully automated deep learning pipeline to accurately segment OB tissue on sub-millimeter T2-weighted (T2w) whole-brain MR images. To this end, we designed a three-stage pipeline: (1) Localization of a region containing both OBs using FastSurferCNN, (2) Segmentation of OB tissue within the localized region through four independent AttFastSurferCNN - a novel deep learning architecture with a self-attention mechanism to improve modeling of contextual information, and (3) Ensemble of the predicted label maps. For this work, both OBs were manually annotated in a total of 620 T2w images for training (n=357) and testing. The OB pipeline exhibits high performance in terms of boundary delineation, OB localization, and volume estimation across a wide range of ages in 203 participants of the Rhineland Study (Dice Score (Dice): 0.852, Volume Similarity (VS): 0.910, and Average Hausdorff Distance (AVD): 0.215 mm). Moreover, it also generalizes to scans of an independent dataset never encountered during training, the Human Connectome Project (HCP), with different acquisition parameters and demographics, evaluated in 30 cases at the native 0.7 mm HCP resolution (Dice: 0.738, VS: 0.790, and AVD: 0.340 mm), and the default 0.8 mm pipeline resolution (Dice: 0.782, VS: 0.858, and AVD: 0.268 mm). We extensively validated our pipeline not only with respect to segmentation accuracy but also to known OB volume effects, where it can sensitively replicate age effects (β=-0.232, p<.01). Furthermore, our method can analyze a 3D volume in less than a minute (GPU) in an end-to-end fashion, providing a validated, efficient, and scalable solution for automatically assessing OB volumes.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Convolutional neural networks
|2 Other
650 _ 7 |a Deep learning
|2 Other
650 _ 7 |a Olfactory bulb
|2 Other
650 _ 7 |a Semantic segmentation
|2 Other
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Deep Learning
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Neural Networks, Computer
|2 MeSH
650 _ 2 |a Olfactory Bulb: diagnostic imaging
|2 MeSH
693 _ _ |0 EXP:(DE-2719)Rhineland Study-20190321
|5 EXP:(DE-2719)Rhineland Study-20190321
|e Rhineland Study / Bonn
|x 0
700 1 _ |a Lu, Ran
|0 P:(DE-2719)2811646
|b 1
|u dzne
700 1 _ |a Diers, Kersten
|0 P:(DE-2719)2812059
|b 2
|u dzne
700 1 _ |a Zeng, Weiyi
|0 P:(DE-2719)9000827
|b 3
|u dzne
700 1 _ |a Ehses, Philipp
|0 P:(DE-2719)2812222
|b 4
|u dzne
700 1 _ |a Stöcker, Tony
|0 P:(DE-2719)2810538
|b 5
|u dzne
700 1 _ |a Breteler, Monique
|0 P:(DE-2719)2810403
|b 6
|u dzne
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 7
|e Last author
|u dzne
773 _ _ |a 10.1016/j.neuroimage.2021.118464
|g Vol. 242, p. 118464 -
|0 PERI:(DE-600)1471418-8
|p 118464
|t NeuroImage
|v 242
|y 2021
|x 1053-8119
856 4 _ |u https://pub.dzne.de/record/162724/files/DZNE-2021-01381.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/162724/files/DZNE-2021-01381.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:162724
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812449
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811646
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812059
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000827
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812222
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810538
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810403
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2812134
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:29:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1012001
|k AG Breteler
|l Population Health Sciences
|x 0
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 1
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1012001
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a I:(DE-2719)1013026
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21