001     162725
005     20230915092403.0
024 7 _ |a 10.1016/j.neuroimage.2021.118438
|2 doi
024 7 _ |a pmid:34332042
|2 pmid
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a altmetric:110880584
|2 altmetric
037 _ _ |a DZNE-2021-01382
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schmicker, Marlen
|0 P:(DE-2719)2810318
|b 0
|e First author
|u dzne
245 _ _ |a Making the rich richer: Frontoparietal tDCS enhances transfer effects of a single-session distractor inhibition training on working memory in high capacity individuals but reduces them in low capacity individuals.
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655731839_9505
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a CC BY
520 _ _ |a Working memory (WM) performance depends on the ability to extract relevant while inhibiting irrelevant information from entering the WM storage. This distractor inhibition ability can be trained and is known to induce transfer effects on WM performance. Here we asked whether transfer on WM can be boosted by transcranial direct current stimulation (tDCS) during a single-session distractor inhibition training. As WM performance is ascribed to the frontoparietal network, in which prefrontal areas are associated with inhibiting distractors and posterior parietal areas with storing information, we placed the anode over the prefrontal and the cathode over the posterior parietal cortex during a single-session distractor inhibition training. This network-oriented stimulation protocol should enhance inhibition processes by shifting the neural activity from posterior to prefrontal regions. WM improved after a single-session distractor inhibition training under verum stimulation but only in subjects with a high WM capacity. In subjects with a low WM capacity, verum tDCS reduced the transfer effects on WM. We assume tDCS to strengthen the frontostriatal pathway in individuals with a high WM capacity leading to efficient inhibition of distractors. In contrast, the cathodal stimulation of the posterior parietal cortex might have hindered usual compensational mechanism in low capacity subjects, i.e. maintaining also irrelevant information in memory. Our results thus stress the need to adjust tDCS protocols to well-founded knowledge about neural networks and individual cognitive differences.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Cognitive training
|2 Other
650 _ 7 |a Distractor inhibition
|2 Other
650 _ 7 |a Frontoparietal network
|2 Other
650 _ 7 |a Individual differences
|2 Other
650 _ 7 |a Working memory capacity
|2 Other
650 _ 7 |a tDCS
|2 Other
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Cognition
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Individuality
|2 MeSH
650 _ 2 |a Inhibition, Psychological
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Memory, Short-Term: physiology
|2 MeSH
650 _ 2 |a Neuropsychological Tests
|2 MeSH
650 _ 2 |a Parietal Lobe: physiology
|2 MeSH
650 _ 2 |a Prefrontal Cortex: physiology
|2 MeSH
650 _ 2 |a Transcranial Direct Current Stimulation: methods
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
700 1 _ |a Menze, Inga
|0 P:(DE-2719)2811562
|b 1
|u dzne
700 1 _ |a Schneider, Christine
|0 P:(DE-2719)2812352
|b 2
|u dzne
700 1 _ |a Taubert, Marco
|b 3
700 1 _ |a Zaehle, Tino
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller, Notger
|0 P:(DE-2719)2191623
|b 5
|e Last author
|u dzne
773 _ _ |a 10.1016/j.neuroimage.2021.118438
|g Vol. 242, p. 118438 -
|0 PERI:(DE-600)1471418-8
|p 118438
|t NeuroImage
|v 242
|y 2021
|x 1053-8119
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/162725/files/DZNE-2021-01382.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/162725/files/DZNE-2021-01382.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:162725
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2810318
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811562
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812352
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2191623
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:29:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-27T20:29:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)1310003
|k AG Müller
|l Neuroprotection
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310003
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21