001     162800
005     20230915092407.0
024 7 _ |a 10.1093/neuonc/noab136
|2 doi
024 7 _ |a pmid:34077956
|2 pmid
024 7 _ |a pmc:PMC8408859
|2 pmc
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
024 7 _ |a altmetric:106956292
|2 altmetric
037 _ _ |a DZNE-2021-01455
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a von Hoff, Katja
|0 0000-0002-5669-8546
|b 0
245 _ _ |a Therapeutic implications of improved molecular diagnostics for rare CNS embryonal tumor entities: results of an international, retrospective study.
260 _ _ |a Oxford
|c 2021
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637585218_15706
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Only few data are available on treatment-associated behavior of distinct rare CNS embryonal tumor entities previously treated as 'CNS-primitive neuroectodermal tumors' (CNS-PNET). Respective data on specific entities, including CNS neuroblastoma, FOXR2 activated (CNS NB-FOXR2), and embryonal tumors with multilayered rosettes (ETMR) are needed for development of differentiated treatment strategies.Within this retrospective, international study, tumor samples of clinically well-annotated patients with the original diagnosis of CNS-PNET were analyzed using DNA methylation arrays (n = 307). Additional cases (n = 66) with DNA methylation pattern of CNS NB-FOXR2 were included irrespective of initial histological diagnosis. Pooled clinical data (n = 292) were descriptively analyzed.DNA methylation profiling of 'CNS-PNET' classified 58 (19%) cases as ETMR, 57 (19%) as high-grade glioma (HGG), 36 (12%) as CNS NB-FOXR2, and 89(29%) cases were classified into 18 other entities. Sixty-seven (22%) cases did not show DNA methylation patterns similar to established CNS tumor reference classes. Best treatment results were achieved for CNS NB-FOXR2 patients (5-year PFS: 63% ± 7%, OS: 85% ± 5%, n = 63), with 35/42 progression-free survivors after upfront craniospinal irradiation (CSI) and chemotherapy. The worst outcome was seen for ETMR and HGG patients with 5-year PFS of 18% ± 6% and 22% ± 7%, and 5-year OS of 24% ± 6% and 25% ± 7%, respectively.The historically reported poor outcome of CNS-PNET patients becomes highly variable when tumors are molecularly classified based on DNA methylation profiling. Patients with CNS NB-FOXR2 responded well to current treatments and a standard-risk CSI-based regimen may be prospectively evaluated. The poor outcome of ETMR across applied treatment strategies substantiates the necessity for evaluation of novel treatments.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a CNS NB-FOXR2
|2 Other
650 _ 7 |a CNS embryonal tumor
|2 Other
650 _ 7 |a CNS-PNET
|2 Other
650 _ 7 |a DNA methylation profiling
|2 Other
650 _ 7 |a ETMR
|2 Other
650 _ 7 |a FOXR2 protein, human
|2 NLM Chemicals
650 _ 7 |a Forkhead Transcription Factors
|2 NLM Chemicals
650 _ 2 |a Brain Neoplasms: diagnosis
|2 MeSH
650 _ 2 |a Brain Neoplasms: genetics
|2 MeSH
650 _ 2 |a Brain Neoplasms: therapy
|2 MeSH
650 _ 2 |a Central Nervous System Neoplasms: diagnosis
|2 MeSH
650 _ 2 |a Central Nervous System Neoplasms: genetics
|2 MeSH
650 _ 2 |a Central Nervous System Neoplasms: therapy
|2 MeSH
650 _ 2 |a Forkhead Transcription Factors
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Neoplasms, Germ Cell and Embryonal: diagnosis
|2 MeSH
650 _ 2 |a Neoplasms, Germ Cell and Embryonal: genetics
|2 MeSH
650 _ 2 |a Neoplasms, Germ Cell and Embryonal: therapy
|2 MeSH
650 _ 2 |a Neuroectodermal Tumors, Primitive: diagnosis
|2 MeSH
650 _ 2 |a Neuroectodermal Tumors, Primitive: genetics
|2 MeSH
650 _ 2 |a Neuroectodermal Tumors, Primitive: therapy
|2 MeSH
650 _ 2 |a Pathology, Molecular
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
700 1 _ |a Haberler, Christine
|b 1
700 1 _ |a Schmitt-Hoffner, Felix
|b 2
700 1 _ |a Schepke, Elizabeth
|b 3
700 1 _ |a de Rojas, Teresa
|b 4
700 1 _ |a Jacobs, Sandra
|b 5
700 1 _ |a Zapotocky, Michal
|b 6
700 1 _ |a Sumerauer, David
|b 7
700 1 _ |a Perek-Polnik, Marta
|b 8
700 1 _ |a Dufour, Christelle
|0 0000-0001-5993-8077
|b 9
700 1 _ |a van Vuurden, Dannis
|b 10
700 1 _ |a Slavc, Irene
|b 11
700 1 _ |a Gojo, Johannes
|b 12
700 1 _ |a Pickles, Jessica C
|b 13
700 1 _ |a Gerber, Nicolas U
|b 14
700 1 _ |a Massimino, Maura
|b 15
700 1 _ |a Gil-da-Costa, Maria Joao
|b 16
700 1 _ |a Garami, Miklos
|b 17
700 1 _ |a Kumirova, Ella
|b 18
700 1 _ |a Sehested, Astrid
|b 19
700 1 _ |a Scheie, David
|0 0000-0002-9772-8828
|b 20
700 1 _ |a Cruz, Ofelia
|b 21
700 1 _ |a Moreno, Lucas
|b 22
700 1 _ |a Cho, Jaeho
|b 23
700 1 _ |a Zeller, Bernward
|b 24
700 1 _ |a Bovenschen, Niels
|b 25
700 1 _ |a Grotzer, Michael
|b 26
700 1 _ |a Alderete, Daniel
|b 27
700 1 _ |a Snuderl, Matija
|b 28
700 1 _ |a Zheludkova, Olga
|b 29
700 1 _ |a Golanov, Andrey
|b 30
700 1 _ |a Okonechnikov, Konstantin
|b 31
700 1 _ |a Mynarek, Martin
|b 32
700 1 _ |a Juhnke, Björn Ole
|b 33
700 1 _ |a Rutkowski, Stefan
|b 34
700 1 _ |a Schüller, Ulrich
|b 35
700 1 _ |a Pizer, Barry
|b 36
700 1 _ |a von Zezschwitz, Barbara
|b 37
700 1 _ |a Kwiecien, Robert
|b 38
700 1 _ |a Wechsung, Maximilian
|b 39
700 1 _ |a Konietschke, Frank
|b 40
700 1 _ |a Hwang, Eugene I
|b 41
700 1 _ |a Sturm, Dominik
|b 42
700 1 _ |a Pfister, Stefan M
|b 43
700 1 _ |a von Deimling, Andreas
|b 44
700 1 _ |a Rushing, Elisabeth J
|b 45
700 1 _ |a Ryzhova, Marina
|b 46
700 1 _ |a Hauser, Peter
|b 47
700 1 _ |a Łastowska, Maria
|b 48
700 1 _ |a Wesseling, Pieter
|0 0000-0001-5453-5201
|b 49
700 1 _ |a Giangaspero, Felice
|b 50
700 1 _ |a Hawkins, Cynthia
|b 51
700 1 _ |a Figarella-Branger, Dominique
|b 52
700 1 _ |a Eberhart, Charles
|b 53
700 1 _ |a Burger, Peter
|b 54
700 1 _ |a Gessi, Marco
|b 55
700 1 _ |a Korshunov, Andrey
|b 56
700 1 _ |a Jacques, Tom S
|b 57
700 1 _ |a Capper, David
|b 58
700 1 _ |a Pietsch, Torsten
|0 P:(DE-2719)2812617
|b 59
|u dzne
700 1 _ |a Kool, Marcel
|b 60
773 _ _ |a 10.1093/neuonc/noab136
|g Vol. 23, no. 9, p. 1597 - 1611
|0 PERI:(DE-600)2094060-9
|n 9
|p 1597 - 1611
|t Neuro-Oncology
|v 23
|y 2021
|x 1523-5866
909 C O |o oai:pub.dzne.de:162800
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 59
|6 P:(DE-2719)2812617
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NEURO-ONCOLOGY : 2021
|d 2022-11-08
920 1 _ |0 I:(DE-2719)1011009
|k Brainbank Unit Bonn
|l Brainbank Unit Bonn
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1011009
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21