Home > Publications Database > Extracellular Vesicle Separation Techniques Impact Results from Human Blood Samples: Considerations for Diagnostic Applications. > print |
001 | 162811 | ||
005 | 20230915092408.0 | ||
024 | 7 | _ | |a 10.3390/ijms22179211 |2 doi |
024 | 7 | _ | |a pmid:34502122 |2 pmid |
024 | 7 | _ | |a pmc:PMC8431127 |2 pmc |
024 | 7 | _ | |a 1422-0067 |2 ISSN |
024 | 7 | _ | |a 1661-6596 |2 ISSN |
024 | 7 | _ | |a altmetric:112404722 |2 altmetric |
037 | _ | _ | |a DZNE-2021-01466 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Tzaridis, Theophilos |0 0000-0001-9651-1144 |b 0 |
245 | _ | _ | |a Extracellular Vesicle Separation Techniques Impact Results from Human Blood Samples: Considerations for Diagnostic Applications. |
260 | _ | _ | |a Basel |c 2021 |b Molecular Diversity Preservation International |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1655976743_2097 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a CC BY |
520 | _ | _ | |a Extracellular vesicles (EVs) are reminiscent of their cell of origin and thus represent a valuable source of biomarkers. However, for EVs to be used as biomarkers in clinical practice, simple, comparable, and reproducible analytical methods must be applied. Although progress is being made in EV separation methods for human biofluids, the implementation of EV assays for clinical diagnosis and common guidelines are still lacking. We conducted a comprehensive analysis of established EV separation techniques from human serum and plasma, including ultracentrifugation and size exclusion chromatography (SEC), followed by concentration using (a) ultracentrifugation, (b) ultrafiltration, or (c) precipitation, and immunoaffinity isolation. We analyzed the size, number, protein, and miRNA content of the obtained EVs and assessed the functional delivery of EV cargo. Our results demonstrate that all methods led to an adequate yield of small EVs. While no significant difference in miRNA content was observed for the different separation methods, ultracentrifugation was best for subsequent flow cytometry analysis. Immunoaffinity isolation is not suitable for subsequent protein analyses. SEC + ultracentrifugation showed the best functional delivery of EV cargo. In summary, combining SEC with ultracentrifugation gives the highest yield of pure and functional EVs and allows reliable analysis of both protein and miRNA contents. We propose this combination as the preferred EV isolation method for biomarker studies from human serum or plasma. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a extracellular vesicle isolation |2 Other |
650 | _ | 7 | |a extracellular vesicles diagnostics |2 Other |
650 | _ | 7 | |a methods in liquid biopsy |2 Other |
650 | _ | 7 | |a plasma biomarker |2 Other |
650 | _ | 7 | |a serum biomarker |2 Other |
650 | _ | 7 | |a Biomarkers |2 NLM Chemicals |
650 | _ | 7 | |a Proteins |2 NLM Chemicals |
650 | _ | 2 | |a Biological Transport |2 MeSH |
650 | _ | 2 | |a Biomarkers |2 MeSH |
650 | _ | 2 | |a Cell Fractionation: methods |2 MeSH |
650 | _ | 2 | |a Chemical Fractionation: methods |2 MeSH |
650 | _ | 2 | |a Extracellular Vesicles: metabolism |2 MeSH |
650 | _ | 2 | |a Extracellular Vesicles: ultrastructure |2 MeSH |
650 | _ | 2 | |a Flow Cytometry |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Liquid Biopsy: methods |2 MeSH |
650 | _ | 2 | |a Proteins: metabolism |2 MeSH |
700 | 1 | _ | |a Bachurski, Daniel |0 0000-0001-9168-9680 |b 1 |
700 | 1 | _ | |a Liu, Shu |0 P:(DE-2719)2810461 |b 2 |u dzne |
700 | 1 | _ | |a Surmann, Kristin |b 3 |
700 | 1 | _ | |a Babatz, Felix |b 4 |
700 | 1 | _ | |a Gesell Salazar, Manuela |b 5 |
700 | 1 | _ | |a Völker, Uwe |b 6 |
700 | 1 | _ | |a Hallek, Michael |b 7 |
700 | 1 | _ | |a Herrlinger, Ulrich |b 8 |
700 | 1 | _ | |a Vorberg, Ina |0 P:(DE-2719)2481765 |b 9 |u dzne |
700 | 1 | _ | |a Coch, Christoph |b 10 |
700 | 1 | _ | |a Reiners, Katrin S |0 0000-0002-5908-8823 |b 11 |
700 | 1 | _ | |a Hartmann, Gunther |b 12 |
770 | _ | _ | |a Circulating Molecules and Precision Medicine in Cancer |
773 | _ | _ | |a 10.3390/ijms22179211 |g Vol. 22, no. 17, p. 9211 - |0 PERI:(DE-600)2019364-6 |n 17 |p 9211 |t International journal of molecular sciences |v 22 |y 2021 |x 1422-0067 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/162811/files/DZNE-2021-01466.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/162811/files/DZNE-2021-01466.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:162811 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)2810461 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 9 |6 P:(DE-2719)2481765 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-04T08:27:04Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-04T08:27:04Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-09-04T08:27:04Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-25 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J MOL SCI : 2021 |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-25 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INT J MOL SCI : 2021 |d 2022-11-25 |
920 | 1 | _ | |0 I:(DE-2719)1013004 |k AG Vorberg |l Prion Cell Biology |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1013004 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|