000162830 001__ 162830
000162830 005__ 20230915092409.0
000162830 0247_ $$2doi$$a10.3389/fgene.2021.761714
000162830 0247_ $$2pmid$$apmid:34659371
000162830 0247_ $$2pmc$$apmc:PMC8517220
000162830 0247_ $$2altmetric$$aaltmetric:114312454
000162830 037__ $$aDZNE-2021-01485
000162830 041__ $$aEnglish
000162830 082__ $$a570
000162830 1001_ $$aHeinz, Annika$$b0
000162830 245__ $$aThe MID1 Protein: A Promising Therapeutic Target in Huntington's Disease.
000162830 260__ $$aLausanne$$bFrontiers Media$$c2021
000162830 3367_ $$2DRIVER$$aarticle
000162830 3367_ $$2DataCite$$aOutput Types/Journal article
000162830 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655472191_22304
000162830 3367_ $$2BibTeX$$aARTICLE
000162830 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000162830 3367_ $$00$$2EndNote$$aJournal Article
000162830 500__ $$a(CC BY)
000162830 520__ $$aHuntington's disease (HD) is caused by an expansion mutation of a CAG repeat in exon 1 of the huntingtin (HTT) gene, that encodes an expanded polyglutamine tract in the HTT protein. HD is characterized by progressive psychiatric and cognitive symptoms associated with a progressive movement disorder. HTT is ubiquitously expressed, but the pathological changes caused by the mutation are most prominent in the central nervous system. Since the mutation was discovered, research has mainly focused on the mutant HTT protein. But what if the polyglutamine protein is not the only cause of the neurotoxicity? Recent studies show that the mutant RNA transcript is also involved in cellular dysfunction. Here we discuss the abnormal interaction of the mutant HTT transcript with a protein complex containing the MID1 protein. MID1 aberrantly binds to CAG repeats and this binding increases with CAG repeat length. Since MID1 is a translation regulator, association of the MID1 complex stimulates translation of mutant HTT mRNA, resulting in an overproduction of polyglutamine protein. Thus, blocking the interaction between MID1 and mutant HTT mRNA is a promising therapeutic approach. Additionally, we show that MID1 expression in the brain of both HD patients and HD mice is aberrantly increased. This finding further supports the concept of blocking the interaction between MID1 and mutant HTT mRNA to counteract mutant HTT translation as a valuable therapeutic strategy. In line, recent studies in which either compounds affecting the assembly of the MID1 complex or molecules targeting HTT RNA, show promising results.
000162830 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000162830 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000162830 650_7 $$2Other$$aAlzheimer’s disease
000162830 650_7 $$2Other$$aCAG repeat
000162830 650_7 $$2Other$$aHuntington’s disease
000162830 650_7 $$2Other$$aMID1
000162830 650_7 $$2Other$$aRNA-protein interaction
000162830 650_7 $$2Other$$aRNA-targeting drug
000162830 650_7 $$2Other$$amRNA translation
000162830 7001_ $$0P:(DE-2719)2810643$$aSchilling, Judith$$b1
000162830 7001_ $$avan Roon-Mom, Willeke$$b2
000162830 7001_ $$0P:(DE-HGF)0$$aKrauß, Sybille$$b3
000162830 773__ $$0PERI:(DE-600)2606823-0$$a10.3389/fgene.2021.761714$$gVol. 12, p. 761714$$p761714$$tFrontiers in genetics$$v12$$x1664-8021$$y2021
000162830 8564_ $$uhttps://pub.dzne.de/record/162830/files/DZNE-2021-01485.pdf$$yOpenAccess
000162830 8564_ $$uhttps://pub.dzne.de/record/162830/files/DZNE-2021-01485.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000162830 909CO $$ooai:pub.dzne.de:162830$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000162830 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810643$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000162830 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000162830 9141_ $$y2021
000162830 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-04
000162830 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000162830 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000162830 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000162830 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000162830 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000162830 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000162830 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT GENET : 2021$$d2022-11-08
000162830 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000162830 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000162830 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04T10:15:44Z
000162830 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04T10:15:44Z
000162830 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04T10:15:44Z
000162830 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000162830 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000162830 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-08
000162830 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-08
000162830 9201_ $$0I:(DE-2719)1011006$$kAG Krauß$$lRegulatory RNA-protein interaction in neurodegenerative diseases$$x0
000162830 980__ $$ajournal
000162830 980__ $$aVDB
000162830 980__ $$aUNRESTRICTED
000162830 980__ $$aI:(DE-2719)1011006
000162830 9801_ $$aFullTexts