000162833 001__ 162833
000162833 005__ 20230915092410.0
000162833 0247_ $$2doi$$a10.3390/ijerph182010663
000162833 0247_ $$2pmid$$apmid:34682408
000162833 0247_ $$2pmc$$apmc:PMC8535595
000162833 0247_ $$2ISSN$$a1660-4601
000162833 0247_ $$2ISSN$$a1661-7827
000162833 0247_ $$2altmetric$$aaltmetric:115381583
000162833 037__ $$aDZNE-2021-01488
000162833 041__ $$aEnglish
000162833 082__ $$a610
000162833 1001_ $$0P:(DE-2719)2811246$$aDoblhammer-Reiter, Gabriele$$b0$$eFirst author$$udzne
000162833 245__ $$aRegional Characteristics of the Second Wave of SARS-CoV-2 Infections and COVID-19 Deaths in Germany.
000162833 260__ $$aBasel$$bMDPI AG$$c2021
000162833 3367_ $$2DRIVER$$aarticle
000162833 3367_ $$2DataCite$$aOutput Types/Journal article
000162833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673434041_12913
000162833 3367_ $$2BibTeX$$aARTICLE
000162833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000162833 3367_ $$00$$2EndNote$$aJournal Article
000162833 500__ $$a(CC BY)
000162833 520__ $$a(1) Background: In the absence of individual level information, the aim of this study was to identify the regional key features explaining SARS-CoV-2 infections and COVID-19 deaths during the upswing of the second wave in Germany. (2) Methods: We used COVID-19 diagnoses and deaths from 1 October to 15 December 2020, on the county-level, differentiating five two-week time periods. For each period, we calculated the age-standardized COVID-19 incidence and death rates on the county level. We trained gradient boosting models to predict the incidence and death rates by 155 indicators and identified the top 20 associations using Shap values. (3) Results: Counties with low socioeconomic status (SES) had higher infection and death rates, as had those with high international migration, a high proportion of foreigners, and a large nursing home population. The importance of these characteristics changed over time. During the period of intense exponential increase in infections, the proportion of the population that voted for the Alternative for Germany (AfD) party in the last federal election was among the top characteristics correlated with high incidence and death rates. (4) Machine learning approaches can reveal regional characteristics that are associated with high rates of infection and mortality.
000162833 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000162833 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000162833 650_7 $$2Other$$aShap values
000162833 650_7 $$2Other$$aboosting models
000162833 650_7 $$2Other$$aincidence
000162833 650_7 $$2Other$$amachine learning
000162833 650_7 $$2Other$$amortality
000162833 650_2 $$2MeSH$$aCOVID-19
000162833 650_2 $$2MeSH$$aGermany: epidemiology
000162833 650_2 $$2MeSH$$aHumans
000162833 650_2 $$2MeSH$$aIncidence
000162833 650_2 $$2MeSH$$aIncome
000162833 650_2 $$2MeSH$$aSARS-CoV-2
000162833 7001_ $$0P:(DE-2719)2812837$$aKreft, Daniel$$b1$$udzne
000162833 7001_ $$00000-0003-3228-1794$$aReinke, Constantin$$b2
000162833 773__ $$0PERI:(DE-600)2175195-X$$a10.3390/ijerph182010663$$gVol. 18, no. 20, p. 10663 -$$n20$$p10663$$tInternational journal of environmental research and public health$$v18$$x1660-4601$$y2021
000162833 7870_ $$0DZNE-2022-01320$$aDoblhammer-Reiter, Gabriele et.al.$$d2021$$iRelatedTo$$r$$tThe second wave of SARS-CoV-2 infections and COVID-19 deaths in Germany – driven by values, social status and migration background? A county-scale explainable machine learning approach
000162833 8564_ $$uhttps://pub.dzne.de/record/162833/files/DZNE-2021-01488.pdf$$yOpenAccess
000162833 8564_ $$uhttps://pub.dzne.de/record/162833/files/DZNE-2021-01488.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000162833 909CO $$ooai:pub.dzne.de:162833$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000162833 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811246$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000162833 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812837$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000162833 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000162833 9141_ $$y2021
000162833 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-01-27
000162833 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000162833 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000162833 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000162833 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000162833 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000162833 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-17T19:41:45Z
000162833 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-17T19:41:45Z
000162833 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-17T19:41:45Z
000162833 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J ENV RES PUB HE : 2021$$d2022-11-25
000162833 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000162833 9201_ $$0I:(DE-2719)1012002$$kAG Doblhammer-Reiter$$lDemographic Studies$$x0
000162833 980__ $$ajournal
000162833 980__ $$aVDB
000162833 980__ $$aI:(DE-2719)1012002
000162833 980__ $$aUNRESTRICTED
000162833 9801_ $$aFullTexts