001     162833
005     20230915092410.0
024 7 _ |a 10.3390/ijerph182010663
|2 doi
024 7 _ |a pmid:34682408
|2 pmid
024 7 _ |a pmc:PMC8535595
|2 pmc
024 7 _ |a 1660-4601
|2 ISSN
024 7 _ |a 1661-7827
|2 ISSN
024 7 _ |a altmetric:115381583
|2 altmetric
037 _ _ |a DZNE-2021-01488
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Doblhammer-Reiter, Gabriele
|0 P:(DE-2719)2811246
|b 0
|e First author
|u dzne
245 _ _ |a Regional Characteristics of the Second Wave of SARS-CoV-2 Infections and COVID-19 Deaths in Germany.
260 _ _ |a Basel
|c 2021
|b MDPI AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673434041_12913
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY)
520 _ _ |a (1) Background: In the absence of individual level information, the aim of this study was to identify the regional key features explaining SARS-CoV-2 infections and COVID-19 deaths during the upswing of the second wave in Germany. (2) Methods: We used COVID-19 diagnoses and deaths from 1 October to 15 December 2020, on the county-level, differentiating five two-week time periods. For each period, we calculated the age-standardized COVID-19 incidence and death rates on the county level. We trained gradient boosting models to predict the incidence and death rates by 155 indicators and identified the top 20 associations using Shap values. (3) Results: Counties with low socioeconomic status (SES) had higher infection and death rates, as had those with high international migration, a high proportion of foreigners, and a large nursing home population. The importance of these characteristics changed over time. During the period of intense exponential increase in infections, the proportion of the population that voted for the Alternative for Germany (AfD) party in the last federal election was among the top characteristics correlated with high incidence and death rates. (4) Machine learning approaches can reveal regional characteristics that are associated with high rates of infection and mortality.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Shap values
|2 Other
650 _ 7 |a boosting models
|2 Other
650 _ 7 |a incidence
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a mortality
|2 Other
650 _ 2 |a COVID-19
|2 MeSH
650 _ 2 |a Germany: epidemiology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Incidence
|2 MeSH
650 _ 2 |a Income
|2 MeSH
650 _ 2 |a SARS-CoV-2
|2 MeSH
700 1 _ |a Kreft, Daniel
|0 P:(DE-2719)2812837
|b 1
|u dzne
700 1 _ |a Reinke, Constantin
|0 0000-0003-3228-1794
|b 2
773 _ _ |a 10.3390/ijerph182010663
|g Vol. 18, no. 20, p. 10663 -
|0 PERI:(DE-600)2175195-X
|n 20
|p 10663
|t International journal of environmental research and public health
|v 18
|y 2021
|x 1660-4601
787 0 _ |a Doblhammer-Reiter, Gabriele et.al.
|d 2021
|i RelatedTo
|0 DZNE-2022-01320
|r
|t The second wave of SARS-CoV-2 infections and COVID-19 deaths in Germany – driven by values, social status and migration background? A county-scale explainable machine learning approach
856 4 _ |u https://pub.dzne.de/record/162833/files/DZNE-2021-01488.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/162833/files/DZNE-2021-01488.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:162833
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811246
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812837
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-17T19:41:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-17T19:41:45Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-17T19:41:45Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J ENV RES PUB HE : 2021
|d 2022-11-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-25
920 1 _ |0 I:(DE-2719)1012002
|k AG Doblhammer-Reiter
|l Demographic Studies
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1012002
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21