001     162927
005     20240320115515.0
024 7 _ |a 10.1002/JLB.1A0920-588R
|2 doi
024 7 _ |a pmid:34585416
|2 pmid
024 7 _ |a 0741-5400
|2 ISSN
024 7 _ |a 1938-3673
|2 ISSN
024 7 _ |a altmetric:128828704
|2 altmetric
037 _ _ |a DZNE-2021-01579
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Jangani, Maryam
|b 0
245 _ _ |a Loss of mTORC2-induced metabolic reprogramming in monocytes uncouples migration and maturation from production of proinflammatory mediators.
260 _ _ |a Hoboken, NJ
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655205563_927
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY)
520 _ _ |a Monocyte migration to the sites of inflammation and maturation into macrophages are key steps for their immune effector function. Here, we show that mechanistic target of rapamycin complex 2 (mTORC2)-dependent Akt activation is instrumental for metabolic reprogramming at the early stages of macrophage-mediated immunity. Despite an increased production of proinflammatory mediators, monocytes lacking expression of the mTORC2 component Rictor fail to efficiently migrate to inflammatory sites and fully mature into macrophages, resulting in reduced inflammatory responses in vivo. The mTORC2-dependent phosphorylation of Akt is instrumental for the enhancement of glycolysis and mitochondrial respiration, required to sustain monocyte maturation and motility. These observations are discussed in the context of therapeutic strategies aimed at selective inhibition of mTORC2 activity.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a cell metabolism
|2 Other
650 _ 7 |a mTORC2
|2 Other
650 _ 7 |a macrophage
|2 Other
650 _ 7 |a metabolism
|2 Other
650 _ 7 |a monocyte
|2 Other
650 _ 2 |a Macrophages: metabolism
|2 MeSH
650 _ 2 |a Mechanistic Target of Rapamycin Complex 2: metabolism
|2 MeSH
650 _ 2 |a Monocytes: metabolism
|2 MeSH
650 _ 2 |a Proto-Oncogene Proteins c-akt: metabolism
|2 MeSH
650 _ 2 |a Rapamycin-Insensitive Companion of mTOR Protein: metabolism
|2 MeSH
650 _ 2 |a Sirolimus
|2 MeSH
700 1 _ |a Vuononvirta, Juho
|b 1
700 1 _ |a Yamani, Lamya
|b 2
700 1 _ |a Ward, Eleanor
|b 3
700 1 _ |a Capasso, Melania
|0 P:(DE-2719)2811780
|b 4
|u dzne
700 1 _ |a Nadkarni, Suchita
|b 5
700 1 _ |a Balkwill, Frances
|b 6
700 1 _ |a Marelli-Berg, Federica
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/JLB.1A0920-588R
|g p. JLB.1A0920-588R
|0 PERI:(DE-600)2026833-6
|n 5
|p 967-980
|t Journal of leukocyte biology
|v 111
|y 2022
|x 1938-3673
856 4 _ |u https://jlb.onlinelibrary.wiley.com/doi/10.1002/JLB.1A0920-588R
856 4 _ |u https://pub.dzne.de/record/162927/files/DZNE-2021-01579.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/162927/files/DZNE-2021-01579.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:162927
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811780
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J LEUKOCYTE BIOL : 2021
|d 2022-11-22
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J LEUKOCYTE BIOL : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
920 1 _ |0 I:(DE-2719)1013033
|k AG Capasso
|l Immune Regulation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013033
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21