000163151 001__ 163151
000163151 005__ 20230915092416.0
000163151 0247_ $$2doi$$a10.7554/eLife.74172
000163151 0247_ $$2pmid$$apmid:34964714
000163151 0247_ $$2pmc$$apmc:PMC8741211
000163151 0247_ $$2altmetric$$aaltmetric:119981267
000163151 037__ $$aDZNE-2022-00002
000163151 041__ $$aEnglish
000163151 082__ $$a600
000163151 1001_ $$0P:(DE-2719)2812229$$aPrisco, Luigi$$b0$$eFirst author$$udzne
000163151 245__ $$aThe anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx.
000163151 260__ $$aCambridge$$beLife Sciences Publications$$c2021
000163151 3367_ $$2DRIVER$$aarticle
000163151 3367_ $$2DataCite$$aOutput Types/Journal article
000163151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673440168_12917
000163151 3367_ $$2BibTeX$$aARTICLE
000163151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163151 3367_ $$00$$2EndNote$$aJournal Article
000163151 500__ $$aGrants relevant to the publication: Forschungsgruppe 2705 , Entschlüsselung eines Gehirn-Schaltkreises: Struktur, Plastizität und Verhaltensfunktion des Pilzkörpers von Drosophila
000163151 520__ $$aTo identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.
000163151 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000163151 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000163151 650_7 $$2Other$$aAPL
000163151 650_7 $$2Other$$aD. melanogaster
000163151 650_7 $$2Other$$ainhibition
000163151 650_7 $$2Other$$amicroglomerulus
000163151 650_7 $$2Other$$amushroom body
000163151 650_7 $$2Other$$aneuroscience
000163151 650_7 $$2Other$$apattern separation
000163151 650_7 $$2Other$$asparse coding
000163151 650_7 $$0SY7Q814VUP$$2NLM Chemicals$$aCalcium
000163151 650_2 $$2MeSH$$aAnimals
000163151 650_2 $$2MeSH$$aCalcium: analysis
000163151 650_2 $$2MeSH$$aDrosophila melanogaster: physiology
000163151 650_2 $$2MeSH$$aFemale
000163151 650_2 $$2MeSH$$aMale
000163151 650_2 $$2MeSH$$aMicroscopy, Confocal
000163151 650_2 $$2MeSH$$aMicroscopy, Electron
000163151 650_2 $$2MeSH$$aMushroom Bodies: physiology
000163151 650_2 $$2MeSH$$aMushroom Bodies: ultrastructure
000163151 650_2 $$2MeSH$$aNeurons: physiology
000163151 650_2 $$2MeSH$$aNeurons: ultrastructure
000163151 650_2 $$2MeSH$$aPresynaptic Terminals
000163151 650_2 $$2MeSH$$aSmell: physiology
000163151 7001_ $$00000-0002-4678-4926$$aDeimel, Stephan Hubertus$$b1
000163151 7001_ $$0P:(DE-2719)9001431$$aYeliseyeva, Hanna$$b2$$udzne
000163151 7001_ $$00000-0002-9745-5145$$aFiala, André$$b3
000163151 7001_ $$0P:(DE-2719)2810271$$aTavosanis, Gaia$$b4$$eLast author$$udzne
000163151 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.74172$$gVol. 10, p. e74172$$pe74172$$teLife$$v10$$x2050-084X$$y2021
000163151 7870_ $$0DZNE-2022-01781$$aTavosanis, Gaia et.al.$$dDryad, 2021$$iRelatedTo$$r$$tAPL synapses distribution on PN and KC meshes, primary data, calcium imaging macros and python scripts from Prisco et al.
000163151 8564_ $$uhttps://pubmed.ncbi.nlm.nih.gov/34964714/
000163151 8564_ $$uhttps://pub.dzne.de/record/163151/files/elife-74172-v2.pdf$$yOpenAccess
000163151 8564_ $$uhttps://pub.dzne.de/record/163151/files/elife-74172-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000163151 909CO $$ooai:pub.dzne.de:163151$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000163151 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812229$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000163151 9101_ $$0I:(DE-HGF)0$$60000-0002-4678-4926$$aExternal Institute$$b1$$kExtern
000163151 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001431$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000163151 9101_ $$0I:(DE-HGF)0$$60000-0002-9745-5145$$aExternal Institute$$b3$$kExtern
000163151 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810271$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000163151 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000163151 9141_ $$y2021
000163151 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-03
000163151 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000163151 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000163151 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000163151 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000163151 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000163151 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000163151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2021$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-23T12:20:44Z
000163151 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-23T12:20:44Z
000163151 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-23T12:20:44Z
000163151 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-23
000163151 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2021$$d2022-11-23
000163151 920__ $$lyes
000163151 9201_ $$0I:(DE-2719)1013018$$kAG Tavosanis$$lDynamics of neuronal circuits$$x0
000163151 980__ $$ajournal
000163151 980__ $$aVDB
000163151 980__ $$aI:(DE-2719)1013018
000163151 980__ $$aUNRESTRICTED
000163151 9801_ $$aFullTexts