Home > Publications Database > The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx. > print |
001 | 163151 | ||
005 | 20230915092416.0 | ||
024 | 7 | _ | |a 10.7554/eLife.74172 |2 doi |
024 | 7 | _ | |a pmid:34964714 |2 pmid |
024 | 7 | _ | |a pmc:PMC8741211 |2 pmc |
024 | 7 | _ | |a altmetric:119981267 |2 altmetric |
037 | _ | _ | |a DZNE-2022-00002 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Prisco, Luigi |0 P:(DE-2719)2812229 |b 0 |e First author |u dzne |
245 | _ | _ | |a The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx. |
260 | _ | _ | |a Cambridge |c 2021 |b eLife Sciences Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673440168_12917 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Grants relevant to the publication: Forschungsgruppe 2705 , Entschlüsselung eines Gehirn-Schaltkreises: Struktur, Plastizität und Verhaltensfunktion des Pilzkörpers von Drosophila |
520 | _ | _ | |a To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation. |
536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a APL |2 Other |
650 | _ | 7 | |a D. melanogaster |2 Other |
650 | _ | 7 | |a inhibition |2 Other |
650 | _ | 7 | |a microglomerulus |2 Other |
650 | _ | 7 | |a mushroom body |2 Other |
650 | _ | 7 | |a neuroscience |2 Other |
650 | _ | 7 | |a pattern separation |2 Other |
650 | _ | 7 | |a sparse coding |2 Other |
650 | _ | 7 | |a Calcium |0 SY7Q814VUP |2 NLM Chemicals |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Calcium: analysis |2 MeSH |
650 | _ | 2 | |a Drosophila melanogaster: physiology |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Microscopy, Confocal |2 MeSH |
650 | _ | 2 | |a Microscopy, Electron |2 MeSH |
650 | _ | 2 | |a Mushroom Bodies: physiology |2 MeSH |
650 | _ | 2 | |a Mushroom Bodies: ultrastructure |2 MeSH |
650 | _ | 2 | |a Neurons: physiology |2 MeSH |
650 | _ | 2 | |a Neurons: ultrastructure |2 MeSH |
650 | _ | 2 | |a Presynaptic Terminals |2 MeSH |
650 | _ | 2 | |a Smell: physiology |2 MeSH |
700 | 1 | _ | |a Deimel, Stephan Hubertus |0 0000-0002-4678-4926 |b 1 |
700 | 1 | _ | |a Yeliseyeva, Hanna |0 P:(DE-2719)9001431 |b 2 |u dzne |
700 | 1 | _ | |a Fiala, André |0 0000-0002-9745-5145 |b 3 |
700 | 1 | _ | |a Tavosanis, Gaia |0 P:(DE-2719)2810271 |b 4 |e Last author |u dzne |
773 | _ | _ | |a 10.7554/eLife.74172 |g Vol. 10, p. e74172 |0 PERI:(DE-600)2687154-3 |p e74172 |t eLife |v 10 |y 2021 |x 2050-084X |
787 | 0 | _ | |a Tavosanis, Gaia et.al. |d Dryad, 2021 |i RelatedTo |0 DZNE-2022-01781 |r |t APL synapses distribution on PN and KC meshes, primary data, calcium imaging macros and python scripts from Prisco et al. |
856 | 4 | _ | |u https://pubmed.ncbi.nlm.nih.gov/34964714/ |
856 | 4 | _ | |u https://pub.dzne.de/record/163151/files/elife-74172-v2.pdf |y OpenAccess |
856 | 4 | _ | |u https://pub.dzne.de/record/163151/files/elife-74172-v2.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:163151 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)2812229 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 0000-0002-4678-4926 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)9001431 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 0000-0002-9745-5145 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)2810271 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELIFE : 2021 |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-23T12:20:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-23T12:20:44Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-09-23T12:20:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-23 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-23 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ELIFE : 2021 |d 2022-11-23 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-2719)1013018 |k AG Tavosanis |l Dynamics of neuronal circuits |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)1013018 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|