001     163151
005     20230915092416.0
024 7 _ |a 10.7554/eLife.74172
|2 doi
024 7 _ |a pmid:34964714
|2 pmid
024 7 _ |a pmc:PMC8741211
|2 pmc
024 7 _ |a altmetric:119981267
|2 altmetric
037 _ _ |a DZNE-2022-00002
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Prisco, Luigi
|0 P:(DE-2719)2812229
|b 0
|e First author
|u dzne
245 _ _ |a The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx.
260 _ _ |a Cambridge
|c 2021
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673440168_12917
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Grants relevant to the publication: Forschungsgruppe 2705 , Entschlüsselung eines Gehirn-Schaltkreises: Struktur, Plastizität und Verhaltensfunktion des Pilzkörpers von Drosophila
520 _ _ |a To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a APL
|2 Other
650 _ 7 |a D. melanogaster
|2 Other
650 _ 7 |a inhibition
|2 Other
650 _ 7 |a microglomerulus
|2 Other
650 _ 7 |a mushroom body
|2 Other
650 _ 7 |a neuroscience
|2 Other
650 _ 7 |a pattern separation
|2 Other
650 _ 7 |a sparse coding
|2 Other
650 _ 7 |a Calcium
|0 SY7Q814VUP
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Calcium: analysis
|2 MeSH
650 _ 2 |a Drosophila melanogaster: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Microscopy, Confocal
|2 MeSH
650 _ 2 |a Microscopy, Electron
|2 MeSH
650 _ 2 |a Mushroom Bodies: physiology
|2 MeSH
650 _ 2 |a Mushroom Bodies: ultrastructure
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Neurons: ultrastructure
|2 MeSH
650 _ 2 |a Presynaptic Terminals
|2 MeSH
650 _ 2 |a Smell: physiology
|2 MeSH
700 1 _ |a Deimel, Stephan Hubertus
|0 0000-0002-4678-4926
|b 1
700 1 _ |a Yeliseyeva, Hanna
|0 P:(DE-2719)9001431
|b 2
|u dzne
700 1 _ |a Fiala, André
|0 0000-0002-9745-5145
|b 3
700 1 _ |a Tavosanis, Gaia
|0 P:(DE-2719)2810271
|b 4
|e Last author
|u dzne
773 _ _ |a 10.7554/eLife.74172
|g Vol. 10, p. e74172
|0 PERI:(DE-600)2687154-3
|p e74172
|t eLife
|v 10
|y 2021
|x 2050-084X
787 0 _ |a Tavosanis, Gaia et.al.
|d Dryad, 2021
|i RelatedTo
|0 DZNE-2022-01781
|r
|t APL synapses distribution on PN and KC meshes, primary data, calcium imaging macros and python scripts from Prisco et al.
856 4 _ |u https://pubmed.ncbi.nlm.nih.gov/34964714/
856 4 _ |u https://pub.dzne.de/record/163151/files/elife-74172-v2.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/163151/files/elife-74172-v2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:163151
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812229
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-4678-4926
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001431
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-9745-5145
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810271
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
920 _ _ |l yes
920 1 _ |0 I:(DE-2719)1013018
|k AG Tavosanis
|l Dynamics of neuronal circuits
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013018
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21