000163188 001__ 163188
000163188 005__ 20240320115516.0
000163188 0247_ $$2doi$$a10.1111/bpa.13015
000163188 0247_ $$2pmid$$apmid:35213083
000163188 0247_ $$2pmc$$apmc:PMC8877736
000163188 0247_ $$2ISSN$$a1015-6305
000163188 0247_ $$2ISSN$$a1750-3639
000163188 0247_ $$2altmetric$$aaltmetric:123688419
000163188 037__ $$aDZNE-2022-00023
000163188 041__ $$aEnglish
000163188 082__ $$a610
000163188 1001_ $$00000-0002-2485-1796$$aGalldiks, Norbert$$b0
000163188 245__ $$aUse of advanced neuroimaging and artificial intelligence in meningiomas.
000163188 260__ $$aOxford$$bWiley-Blackwell$$c2022
000163188 3367_ $$2DRIVER$$aarticle
000163188 3367_ $$2DataCite$$aOutput Types/Journal article
000163188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655212295_924$$xReview Article
000163188 3367_ $$2BibTeX$$aARTICLE
000163188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163188 3367_ $$00$$2EndNote$$aJournal Article
000163188 500__ $$a(CC BY)
000163188 520__ $$aAnatomical cross-sectional imaging methods such as contrast-enhanced MRI and CT are the standard for the delineation, treatment planning, and follow-up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non-invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion-weighted imaging, diffusion-weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular-genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.
000163188 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000163188 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000163188 650_7 $$2Other$$aMRI
000163188 650_7 $$2Other$$aPET
000163188 650_7 $$2Other$$aradiogenomics
000163188 650_7 $$2Other$$aradiomics
000163188 650_2 $$2MeSH$$aArtificial Intelligence
000163188 650_2 $$2MeSH$$aHumans
000163188 650_2 $$2MeSH$$aMeningeal Neoplasms: diagnostic imaging
000163188 650_2 $$2MeSH$$aMeningioma: diagnostic imaging
000163188 650_2 $$2MeSH$$aNeuroimaging
000163188 650_2 $$2MeSH$$aPositron-Emission Tomography
000163188 7001_ $$0P:(DE-2719)2810456$$aAngenstein, Frank$$b1$$udzne
000163188 7001_ $$aWerner, Jan-Michael$$b2
000163188 7001_ $$aBauer, Elena K$$b3
000163188 7001_ $$aGutsche, Robin$$b4
000163188 7001_ $$aFink, Gereon R$$b5
000163188 7001_ $$aLangen, Karl-Josef$$b6
000163188 7001_ $$00000-0002-5360-046X$$aLohmann, Philipp$$b7
000163188 773__ $$0PERI:(DE-600)2029927-8$$a10.1111/bpa.13015$$gVol. 32, no. 2$$n2$$pe13015$$tBrain pathology$$v32$$x1750-3639$$y2022
000163188 8564_ $$uhttps://pub.dzne.de/record/163188/files/DZNE-2022-00023.pdf$$yOpenAccess
000163188 8564_ $$uhttps://pub.dzne.de/record/163188/files/DZNE-2022-00023.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000163188 909CO $$ooai:pub.dzne.de:163188$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000163188 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810456$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000163188 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000163188 9141_ $$y2022
000163188 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000163188 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000163188 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000163188 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000163188 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000163188 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-26T13:10:13Z
000163188 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000163188 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRAIN PATHOL : 2021$$d2022-11-17
000163188 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000163188 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000163188 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-26T13:10:13Z
000163188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000163188 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000163188 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN PATHOL : 2021$$d2022-11-17
000163188 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000163188 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000163188 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000163188 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000163188 9201_ $$0I:(DE-2719)1310004$$kAG Angenstein$$lFunctional Neuroimaging$$x0
000163188 980__ $$ajournal
000163188 980__ $$aVDB
000163188 980__ $$aUNRESTRICTED
000163188 980__ $$aI:(DE-2719)1310004
000163188 9801_ $$aFullTexts