| Home > Publications Database > Use of advanced neuroimaging and artificial intelligence in meningiomas. > print |
| 001 | 163188 | ||
| 005 | 20240320115516.0 | ||
| 024 | 7 | _ | |a 10.1111/bpa.13015 |2 doi |
| 024 | 7 | _ | |a pmid:35213083 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC8877736 |2 pmc |
| 024 | 7 | _ | |a 1015-6305 |2 ISSN |
| 024 | 7 | _ | |a 1750-3639 |2 ISSN |
| 024 | 7 | _ | |a altmetric:123688419 |2 altmetric |
| 037 | _ | _ | |a DZNE-2022-00023 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Galldiks, Norbert |0 0000-0002-2485-1796 |b 0 |
| 245 | _ | _ | |a Use of advanced neuroimaging and artificial intelligence in meningiomas. |
| 260 | _ | _ | |a Oxford |c 2022 |b Wiley-Blackwell |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1655212295_924 |2 PUB:(DE-HGF) |x Review Article |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a (CC BY) |
| 520 | _ | _ | |a Anatomical cross-sectional imaging methods such as contrast-enhanced MRI and CT are the standard for the delineation, treatment planning, and follow-up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non-invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion-weighted imaging, diffusion-weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular-genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma. |
| 536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a MRI |2 Other |
| 650 | _ | 7 | |a PET |2 Other |
| 650 | _ | 7 | |a radiogenomics |2 Other |
| 650 | _ | 7 | |a radiomics |2 Other |
| 650 | _ | 2 | |a Artificial Intelligence |2 MeSH |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Meningeal Neoplasms: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Meningioma: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Neuroimaging |2 MeSH |
| 650 | _ | 2 | |a Positron-Emission Tomography |2 MeSH |
| 700 | 1 | _ | |a Angenstein, Frank |0 P:(DE-2719)2810456 |b 1 |u dzne |
| 700 | 1 | _ | |a Werner, Jan-Michael |b 2 |
| 700 | 1 | _ | |a Bauer, Elena K |b 3 |
| 700 | 1 | _ | |a Gutsche, Robin |b 4 |
| 700 | 1 | _ | |a Fink, Gereon R |b 5 |
| 700 | 1 | _ | |a Langen, Karl-Josef |b 6 |
| 700 | 1 | _ | |a Lohmann, Philipp |0 0000-0002-5360-046X |b 7 |
| 773 | _ | _ | |a 10.1111/bpa.13015 |g Vol. 32, no. 2 |0 PERI:(DE-600)2029927-8 |n 2 |p e13015 |t Brain pathology |v 32 |y 2022 |x 1750-3639 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/163188/files/DZNE-2022-00023.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/163188/files/DZNE-2022-00023.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:163188 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2810456 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-26T13:10:13Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-17 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b BRAIN PATHOL : 2021 |d 2022-11-17 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-02 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-26T13:10:13Z |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-17 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BRAIN PATHOL : 2021 |d 2022-11-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
| 920 | 1 | _ | |0 I:(DE-2719)1310004 |k AG Angenstein |l Functional Neuroimaging |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1310004 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|