001     163188
005     20240320115516.0
024 7 _ |a 10.1111/bpa.13015
|2 doi
024 7 _ |a pmid:35213083
|2 pmid
024 7 _ |a pmc:PMC8877736
|2 pmc
024 7 _ |a 1015-6305
|2 ISSN
024 7 _ |a 1750-3639
|2 ISSN
024 7 _ |a altmetric:123688419
|2 altmetric
037 _ _ |a DZNE-2022-00023
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 0000-0002-2485-1796
|b 0
245 _ _ |a Use of advanced neuroimaging and artificial intelligence in meningiomas.
260 _ _ |a Oxford
|c 2022
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655212295_924
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY)
520 _ _ |a Anatomical cross-sectional imaging methods such as contrast-enhanced MRI and CT are the standard for the delineation, treatment planning, and follow-up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non-invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion-weighted imaging, diffusion-weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular-genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a MRI
|2 Other
650 _ 7 |a PET
|2 Other
650 _ 7 |a radiogenomics
|2 Other
650 _ 7 |a radiomics
|2 Other
650 _ 2 |a Artificial Intelligence
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Meningeal Neoplasms: diagnostic imaging
|2 MeSH
650 _ 2 |a Meningioma: diagnostic imaging
|2 MeSH
650 _ 2 |a Neuroimaging
|2 MeSH
650 _ 2 |a Positron-Emission Tomography
|2 MeSH
700 1 _ |a Angenstein, Frank
|0 P:(DE-2719)2810456
|b 1
|u dzne
700 1 _ |a Werner, Jan-Michael
|b 2
700 1 _ |a Bauer, Elena K
|b 3
700 1 _ |a Gutsche, Robin
|b 4
700 1 _ |a Fink, Gereon R
|b 5
700 1 _ |a Langen, Karl-Josef
|b 6
700 1 _ |a Lohmann, Philipp
|0 0000-0002-5360-046X
|b 7
773 _ _ |a 10.1111/bpa.13015
|g Vol. 32, no. 2
|0 PERI:(DE-600)2029927-8
|n 2
|p e13015
|t Brain pathology
|v 32
|y 2022
|x 1750-3639
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163188/files/DZNE-2022-00023.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163188/files/DZNE-2022-00023.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163188
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810456
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-26T13:10:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRAIN PATHOL : 2021
|d 2022-11-17
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-26T13:10:13Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN PATHOL : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
920 1 _ |0 I:(DE-2719)1310004
|k AG Angenstein
|l Functional Neuroimaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21