000163264 001__ 163264
000163264 005__ 20240320115516.0
000163264 0247_ $$2doi$$a10.1016/j.mcpro.2021.100191
000163264 0247_ $$2pmid$$apmid:34974192
000163264 0247_ $$2pmc$$apmc:PMC8808264
000163264 0247_ $$2ISSN$$a1535-9476
000163264 0247_ $$2ISSN$$a1535-9484
000163264 0247_ $$2altmetric$$aaltmetric:120002243
000163264 037__ $$aDZNE-2022-00044
000163264 041__ $$aEnglish
000163264 082__ $$a610
000163264 1001_ $$aZittlau, Katharina I$$b0
000163264 245__ $$aTemporal Analysis of Protein Ubiquitylation and Phosphorylation During Parkin-Dependent Mitophagy.
000163264 260__ $$aBethesda, Md.$$bThe American Society for Biochemistry and Molecular Biology$$c2022
000163264 3367_ $$2DRIVER$$aarticle
000163264 3367_ $$2DataCite$$aOutput Types/Journal article
000163264 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1657627471_13981
000163264 3367_ $$2BibTeX$$aARTICLE
000163264 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163264 3367_ $$00$$2EndNote$$aJournal Article
000163264 500__ $$a(CC BY)
000163264 520__ $$aMitophagy, the selective degradation of mitochondria by autophagy, affects defective mitochondria following damage or stress. At the onset of mitophagy, parkin ubiquitylates proteins on the mitochondrial outer membrane. While the role of parkin at the onset of mitophagy is well understood, less is known about its activity during later stages in the process. Here, we used HeLa cells expressing catalytically active or inactive parkin to perform temporal analysis of the proteome, ubiquitylome, and phosphoproteome during 18 h after induction of mitophagy by mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine. Abundance profiles of proteins downregulated in parkin-dependent manner revealed a stepwise and 'outside-in' directed degradation of mitochondrial subcompartments. While ubiquitylation of mitochondrial outer membrane proteins was enriched among early parkin-dependent targets, numerous mitochondrial inner membrane, matrix, and cytosolic proteins were also found ubiquitylated at later stages of mitophagy. Phosphoproteome analysis revealed a possible crosstalk between phosphorylation and ubiquitylation during mitophagy on key parkin targets, such as voltage-dependent anion channel 2.
000163264 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000163264 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000163264 650_7 $$2Other$$amitochondria
000163264 650_7 $$2Other$$amitophagy
000163264 650_7 $$2Other$$aparkin
000163264 650_7 $$2Other$$aquantitative proteomics
000163264 650_7 $$2Other$$aubiquitin
000163264 650_2 $$2MeSH$$aHeLa Cells
000163264 650_2 $$2MeSH$$aHumans
000163264 650_2 $$2MeSH$$aMitophagy
000163264 650_2 $$2MeSH$$aPhosphorylation
000163264 650_2 $$2MeSH$$aUbiquitin-Protein Ligases: metabolism
000163264 650_2 $$2MeSH$$aUbiquitination
000163264 7001_ $$0P:(DE-2719)9002265$$aLechado-Terradas, Anna$$b1$$udzne
000163264 7001_ $$aNalpas, Nicolas$$b2
000163264 7001_ $$0P:(DE-2719)2811631$$aGeisler, Sven$$b3
000163264 7001_ $$0P:(DE-2719)2810803$$aKahle, Philipp J$$b4
000163264 7001_ $$aMacek, Boris$$b5
000163264 773__ $$0PERI:(DE-600)2071375-7$$a10.1016/j.mcpro.2021.100191$$gVol. 21, no. 2, p. 100191 -$$n2$$p100191$$tMolecular & cellular proteomics$$v21$$x1535-9476$$y2022
000163264 8564_ $$uhttps://pub.dzne.de/record/163264/files/DZNE-2022-00044.pdf$$yOpenAccess
000163264 8564_ $$uhttps://pub.dzne.de/record/163264/files/DZNE-2022-00044.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000163264 909CO $$ooai:pub.dzne.de:163264$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000163264 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002265$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000163264 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811631$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000163264 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810803$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000163264 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000163264 9141_ $$y2022
000163264 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10
000163264 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000163264 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-10
000163264 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-26
000163264 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000163264 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL CELL PROTEOMICS : 2021$$d2022-11-10
000163264 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-10
000163264 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-15T13:50:16Z
000163264 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000163264 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-15T13:50:16Z
000163264 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000163264 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10
000163264 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-15T13:50:16Z
000163264 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL CELL PROTEOMICS : 2021$$d2022-11-10
000163264 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10
000163264 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10
000163264 9201_ $$0I:(DE-2719)1210000-4$$kAG Kahle 2$$lFunctional Neurogenetics$$x0
000163264 980__ $$ajournal
000163264 980__ $$aVDB
000163264 980__ $$aUNRESTRICTED
000163264 980__ $$aI:(DE-2719)1210000-4
000163264 9801_ $$aFullTexts