001     163270
005     20240301115152.0
024 7 _ |a 10.1016/j.cmet.2022.01.005
|2 doi
024 7 _ |a pmid:35120590
|2 pmid
024 7 _ |a 1550-4131
|2 ISSN
024 7 _ |a 1932-7420
|2 ISSN
024 7 _ |a altmetric:122064751
|2 altmetric
037 _ _ |a DZNE-2022-00050
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Leiter, Odette
|0 P:(DE-2719)9000937
|b 0
|e First author
245 _ _ |a Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging.
260 _ _ |a Cambridge, Mass.
|c 2022
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709207261_980
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY-NC-ND)
520 _ _ |a Although the neurogenesis-enhancing effects of exercise have been extensively studied, the molecular mechanisms underlying this response remain unclear. Here, we propose that this is mediated by the exercise-induced systemic release of the antioxidant selenium transport protein, selenoprotein P (SEPP1). Using knockout mouse models, we confirmed that SEPP1 and its receptor low-density lipoprotein receptor-related protein 8 (LRP8) are required for the exercise-induced increase in adult hippocampal neurogenesis. In vivo selenium infusion increased hippocampal neural precursor cell (NPC) proliferation and adult neurogenesis. Mimicking the effect of exercise through dietary selenium supplementation restored neurogenesis and reversed the cognitive decline associated with aging and hippocampal injury, suggesting potential therapeutic relevance. These results provide a molecular mechanism linking exercise-induced changes in the systemic environment to the activation of quiescent hippocampal NPCs and their subsequent recruitment into the neurogenic trajectory.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a adult neurogenesis
|2 Other
650 _ 7 |a aging
|2 Other
650 _ 7 |a dentate gyrus
|2 Other
650 _ 7 |a endothelin-1
|2 Other
650 _ 7 |a exercise
|2 Other
650 _ 7 |a hippocampal lesion
|2 Other
650 _ 7 |a hippocampus
|2 Other
650 _ 7 |a neural precursor cell
|2 Other
650 _ 7 |a neural stem cell
|2 Other
650 _ 7 |a selenium
|2 Other
650 _ 2 |a Aging
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Cell Proliferation
|2 MeSH
650 _ 2 |a Hippocampus
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Neural Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Neurogenesis: physiology
|2 MeSH
650 _ 2 |a Selenium: metabolism
|2 MeSH
650 _ 2 |a Selenium: pharmacology
|2 MeSH
700 1 _ |a Zhuo, Zhan
|b 1
700 1 _ |a Rust, Ruslan
|0 P:(DE-2719)9002271
|b 2
|u dzne
700 1 _ |a Wasielewska, Joanna M
|0 P:(DE-2719)9000338
|b 3
700 1 _ |a Grönnert, Lisa
|0 P:(DE-2719)9000106
|b 4
700 1 _ |a Kowal, Susann
|0 P:(DE-2719)9002264
|b 5
|u dzne
700 1 _ |a Overall, Rupert W
|0 P:(DE-2719)2812530
|b 6
700 1 _ |a Adusumilli, Vijay S
|0 P:(DE-2719)2810887
|b 7
700 1 _ |a Blackmore, Daniel G
|b 8
700 1 _ |a Southon, Adam
|b 9
700 1 _ |a Ganio, Katherine
|b 10
700 1 _ |a McDevitt, Christopher A
|b 11
700 1 _ |a Rund, Nicole
|0 P:(DE-2719)2811674
|b 12
700 1 _ |a Brici, David
|b 13
700 1 _ |a Mudiyan, Imesh Aththanayake
|b 14
700 1 _ |a Sykes, Alexander M
|b 15
700 1 _ |a Rünker, Annette E
|0 P:(DE-2719)2810792
|b 16
700 1 _ |a Zocher, Sara
|0 P:(DE-2719)2810548
|b 17
700 1 _ |a Ayton, Scott
|b 18
700 1 _ |a Bush, Ashley I
|b 19
700 1 _ |a Bartlett, Perry F
|b 20
700 1 _ |a Hou, Sheng-Tao
|b 21
700 1 _ |a Kempermann, Gerd
|0 P:(DE-2719)2000011
|b 22
700 1 _ |a Walker, Tara L
|0 P:(DE-2719)9000335
|b 23
|e Last author
773 _ _ |a 10.1016/j.cmet.2022.01.005
|g Vol. 34, no. 3, p. 408 - 423.e8
|0 PERI:(DE-600)2174469-5
|n 3
|p 408 - 423.e8
|t Cell metabolism
|v 34
|y 2022
|x 1550-4131
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163270/files/DZNE-2022-00050.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163270/files/DZNE-2022-00050.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163270
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000937
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9002271
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000338
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000106
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9002264
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812530
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810887
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2811674
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2810792
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2810548
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 22
|6 P:(DE-2719)2000011
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 23
|6 P:(DE-2719)9000335
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL METAB : 2021
|d 2022-11-22
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b CELL METAB : 2021
|d 2022-11-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
920 1 _ |0 I:(DE-2719)6000013
|k Dresden common
|l Dresden common
|x 0
920 1 _ |0 I:(DE-2719)1710001
|k AG Kempermann
|l Adult Neurogenesis
|x 1
920 1 _ |0 I:(DE-2719)1710014
|k AG Toda
|l Nuclear Architecture in Neural Plasticity and Aging
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)6000013
980 _ _ |a I:(DE-2719)1710001
980 _ _ |a I:(DE-2719)1710014
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21