000163312 001__ 163312
000163312 005__ 20230303170511.0
000163312 0247_ $$2doi$$a10.1016/j.jbc.2021.101339
000163312 0247_ $$2pmid$$apmid:34688664
000163312 0247_ $$2pmc$$apmc:PMC8591368
000163312 0247_ $$2ISSN$$a0021-9258
000163312 0247_ $$2ISSN$$a1067-8816
000163312 0247_ $$2ISSN$$a1083-351X
000163312 0247_ $$2altmetric$$aaltmetric:115752985
000163312 037__ $$aDZNE-2022-00092
000163312 041__ $$aEnglish
000163312 082__ $$a540
000163312 1001_ $$aLechado Terradas, Anna$$b0
000163312 245__ $$aRegulation of mitochondrial cargo-selective autophagy by posttranslational modifications.
000163312 260__ $$aBethesda, Md.$$bSoc.$$c2021
000163312 3367_ $$2DRIVER$$aarticle
000163312 3367_ $$2DataCite$$aOutput Types/Journal article
000163312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677859479_10795$$xReview Article
000163312 3367_ $$2BibTeX$$aARTICLE
000163312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163312 3367_ $$00$$2EndNote$$aJournal Article
000163312 520__ $$aMitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
000163312 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000163312 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000163312 650_7 $$2Other$$aautophagy
000163312 650_7 $$2Other$$amitochondria
000163312 650_7 $$2Other$$aphosphorylation
000163312 650_7 $$2Other$$aprotein kinase PINK1
000163312 650_7 $$2Other$$aubiquitin ligase parkin
000163312 650_7 $$2Other$$aubiquitylation
000163312 650_7 $$2NLM Chemicals$$aMitochondrial Proteins
000163312 650_2 $$2MeSH$$aAnimals
000163312 650_2 $$2MeSH$$aMitochondria: genetics
000163312 650_2 $$2MeSH$$aMitochondria: metabolism
000163312 650_2 $$2MeSH$$aMitochondrial Dynamics
000163312 650_2 $$2MeSH$$aMitochondrial Proteins: genetics
000163312 650_2 $$2MeSH$$aMitochondrial Proteins: metabolism
000163312 650_2 $$2MeSH$$aMitophagy
000163312 650_2 $$2MeSH$$aSignal Transduction
000163312 650_2 $$2MeSH$$aUbiquitination
000163312 7001_ $$aZittlau, Katharina I$$b1
000163312 7001_ $$aMacek, Boris$$b2
000163312 7001_ $$aFraiberg, Milana$$b3
000163312 7001_ $$aElazar, Zvulun$$b4
000163312 7001_ $$0P:(DE-2719)2810803$$aKahle, Philipp J$$b5$$eLast author$$udzne
000163312 773__ $$0PERI:(DE-600)1474604-9$$a10.1016/j.jbc.2021.101339$$gVol. 297, no. 5, p. 101339 -$$n5$$p101339$$tThe journal of biological chemistry$$v297$$x0021-9258$$y2021
000163312 909CO $$ooai:pub.dzne.de:163312$$pVDB
000163312 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810803$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000163312 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000163312 9141_ $$y2021
000163312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2019$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000163312 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000163312 9201_ $$0I:(DE-2719)1210000-4$$kAG Kahle 2$$lFunctional Neurogenetics$$x0
000163312 980__ $$ajournal
000163312 980__ $$aVDB
000163312 980__ $$aI:(DE-2719)1210000-4
000163312 980__ $$aUNRESTRICTED