001     163312
005     20230303170511.0
024 7 _ |a 10.1016/j.jbc.2021.101339
|2 doi
024 7 _ |a pmid:34688664
|2 pmid
024 7 _ |a pmc:PMC8591368
|2 pmc
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
024 7 _ |a altmetric:115752985
|2 altmetric
037 _ _ |a DZNE-2022-00092
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Lechado Terradas, Anna
|b 0
245 _ _ |a Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications.
260 _ _ |a Bethesda, Md.
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677859479_10795
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a autophagy
|2 Other
650 _ 7 |a mitochondria
|2 Other
650 _ 7 |a phosphorylation
|2 Other
650 _ 7 |a protein kinase PINK1
|2 Other
650 _ 7 |a ubiquitin ligase parkin
|2 Other
650 _ 7 |a ubiquitylation
|2 Other
650 _ 7 |a Mitochondrial Proteins
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mitochondria: genetics
|2 MeSH
650 _ 2 |a Mitochondria: metabolism
|2 MeSH
650 _ 2 |a Mitochondrial Dynamics
|2 MeSH
650 _ 2 |a Mitochondrial Proteins: genetics
|2 MeSH
650 _ 2 |a Mitochondrial Proteins: metabolism
|2 MeSH
650 _ 2 |a Mitophagy
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Ubiquitination
|2 MeSH
700 1 _ |a Zittlau, Katharina I
|b 1
700 1 _ |a Macek, Boris
|b 2
700 1 _ |a Fraiberg, Milana
|b 3
700 1 _ |a Elazar, Zvulun
|b 4
700 1 _ |a Kahle, Philipp J
|0 P:(DE-2719)2810803
|b 5
|e Last author
|u dzne
773 _ _ |a 10.1016/j.jbc.2021.101339
|g Vol. 297, no. 5, p. 101339 -
|0 PERI:(DE-600)1474604-9
|n 5
|p 101339
|t The journal of biological chemistry
|v 297
|y 2021
|x 0021-9258
909 C O |p VDB
|o oai:pub.dzne.de:163312
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810803
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
920 1 _ |0 I:(DE-2719)1210000-4
|k AG Kahle 2
|l Functional Neurogenetics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1210000-4
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21