001     163322
005     20240221135622.0
024 7 _ |a 10.1016/j.cell.2021.11.033
|2 doi
024 7 _ |a pmid:34914922
|2 pmid
024 7 _ |a pmc:PMC8626230
|2 pmc
024 7 _ |a 0092-8674
|2 ISSN
024 7 _ |a 1097-4172
|2 ISSN
024 7 _ |a altmetric:117716540
|2 altmetric
037 _ _ |a DZNE-2022-00102
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wendisch, Daniel
|b 0
245 _ _ |a SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis.
260 _ _ |a New York, NY
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708519994_22070
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a COVID-19-induced 'acute respiratory distress syndrome' (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a ARDS
|2 Other
650 _ 7 |a COVID-19
|2 Other
650 _ 7 |a IPF
|2 Other
650 _ 7 |a SARS-CoV-2
|2 Other
650 _ 7 |a fibrosis
|2 Other
650 _ 7 |a lung
|2 Other
650 _ 7 |a macrophages
|2 Other
650 _ 7 |a monocytes
|2 Other
650 _ 7 |a proteomics
|2 Other
650 _ 7 |a pulmonary fibrosis
|2 Other
650 _ 7 |a single-cell transcriptomics
|2 Other
650 _ 7 |a Antigens, CD
|2 NLM Chemicals
650 _ 7 |a Antigens, Differentiation, Myelomonocytic
|2 NLM Chemicals
650 _ 7 |a CD163 antigen
|2 NLM Chemicals
650 _ 7 |a Proteome
|2 NLM Chemicals
650 _ 7 |a Receptors, Cell Surface
|2 NLM Chemicals
650 _ 2 |a Antigens, CD: metabolism
|2 MeSH
650 _ 2 |a Antigens, Differentiation, Myelomonocytic: metabolism
|2 MeSH
650 _ 2 |a COVID-19: diagnostic imaging
|2 MeSH
650 _ 2 |a COVID-19: pathology
|2 MeSH
650 _ 2 |a COVID-19: virology
|2 MeSH
650 _ 2 |a Cell Communication
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
650 _ 2 |a Fibroblasts: pathology
|2 MeSH
650 _ 2 |a Gene Expression Regulation
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Idiopathic Pulmonary Fibrosis: diagnostic imaging
|2 MeSH
650 _ 2 |a Idiopathic Pulmonary Fibrosis: genetics
|2 MeSH
650 _ 2 |a Idiopathic Pulmonary Fibrosis: pathology
|2 MeSH
650 _ 2 |a Idiopathic Pulmonary Fibrosis: virology
|2 MeSH
650 _ 2 |a Macrophages: pathology
|2 MeSH
650 _ 2 |a Macrophages: virology
|2 MeSH
650 _ 2 |a Mesenchymal Stem Cells: pathology
|2 MeSH
650 _ 2 |a Phenotype
|2 MeSH
650 _ 2 |a Proteome: metabolism
|2 MeSH
650 _ 2 |a Receptors, Cell Surface: metabolism
|2 MeSH
650 _ 2 |a Respiratory Distress Syndrome: diagnostic imaging
|2 MeSH
650 _ 2 |a Respiratory Distress Syndrome: pathology
|2 MeSH
650 _ 2 |a Respiratory Distress Syndrome: virology
|2 MeSH
650 _ 2 |a SARS-CoV-2: physiology
|2 MeSH
650 _ 2 |a Tomography, X-Ray Computed
|2 MeSH
650 _ 2 |a Transcription, Genetic
|2 MeSH
700 1 _ |a Dietrich, Oliver
|b 1
700 1 _ |a Mari, Tommaso
|b 2
700 1 _ |a von Stillfried, Saskia
|b 3
700 1 _ |a Ibarra, Ignacio L
|b 4
700 1 _ |a Mittermaier, Mirja
|b 5
700 1 _ |a Mache, Christin
|b 6
700 1 _ |a Chua, Robert Lorenz
|b 7
700 1 _ |a Knoll, Rainer
|0 P:(DE-2719)9000620
|b 8
|u dzne
700 1 _ |a Timm, Sara
|b 9
700 1 _ |a Brumhard, Sophia
|b 10
700 1 _ |a Krammer, Tobias
|b 11
700 1 _ |a Zauber, Henrik
|b 12
700 1 _ |a Hiller, Anna Luisa
|b 13
700 1 _ |a Pascual-Reguant, Anna
|b 14
700 1 _ |a Mothes, Ronja
|b 15
700 1 _ |a Bülow, Roman David
|b 16
700 1 _ |a Schulze, Jessica
|b 17
700 1 _ |a Leipold, Alexander M
|b 18
700 1 _ |a Djudjaj, Sonja
|b 19
700 1 _ |a Erhard, Florian
|b 20
700 1 _ |a Geffers, Robert
|b 21
700 1 _ |a Pott, Fabian
|b 22
700 1 _ |a Kazmierski, Julia
|b 23
700 1 _ |a Radke, Josefine
|b 24
700 1 _ |a Pergantis, Panagiotis
|b 25
700 1 _ |a Baßler, Kevin
|0 P:(DE-2719)9000836
|b 26
|u dzne
700 1 _ |a Conrad, Claudia
|b 27
700 1 _ |a Aschenbrenner, Anna C
|0 P:(DE-2719)2812913
|b 28
|u dzne
700 1 _ |a Sawitzki, Birgit
|b 29
700 1 _ |a Landthaler, Markus
|b 30
700 1 _ |a Wyler, Emanuel
|b 31
700 1 _ |a Horst, David
|b 32
700 1 _ |a Initiative, Deutsche COVID-19 OMICS
|b 33
|e Collaboration Author
700 1 _ |a Hippenstiel, Stefan
|b 34
700 1 _ |a Hocke, Andreas
|b 35
700 1 _ |a Heppner, Frank L
|0 P:(DE-2719)2812386
|b 36
|u dzne
700 1 _ |a Uhrig, Alexander
|b 37
700 1 _ |a Garcia, Carmen
|b 38
700 1 _ |a Machleidt, Felix
|b 39
700 1 _ |a Herold, Susanne
|b 40
700 1 _ |a Elezkurtaj, Sefer
|b 41
700 1 _ |a Thibeault, Charlotte
|b 42
700 1 _ |a Witzenrath, Martin
|b 43
700 1 _ |a Cochain, Clément
|b 44
700 1 _ |a Suttorp, Norbert
|b 45
700 1 _ |a Drosten, Christian
|b 46
700 1 _ |a Goffinet, Christine
|b 47
700 1 _ |a Kurth, Florian
|b 48
700 1 _ |a Schultze, Joachim L
|0 P:(DE-2719)2811660
|b 49
|u dzne
700 1 _ |a Radbruch, Helena
|b 50
700 1 _ |a Ochs, Matthias
|b 51
700 1 _ |a Eils, Roland
|b 52
700 1 _ |a Müller-Redetzky, Holger
|b 53
700 1 _ |a Hauser, Anja E
|b 54
700 1 _ |a Luecken, Malte D
|b 55
700 1 _ |a Theis, Fabian J
|b 56
700 1 _ |a Conrad, Christian
|b 57
700 1 _ |a Wolff, Thorsten
|b 58
700 1 _ |a Boor, Peter
|b 59
700 1 _ |a Selbach, Matthias
|b 60
700 1 _ |a Saliba, Antoine-Emmanuel
|b 61
700 1 _ |a Sander, Leif Erik
|b 62
773 _ _ |a 10.1016/j.cell.2021.11.033
|g Vol. 184, no. 26, p. 6243 - 6261.e27
|0 PERI:(DE-600)2001951-8
|n 26
|p 6243 - 6261.e27
|t Cell
|v 184
|y 2021
|x 0092-8674
856 4 _ |u https://pub.dzne.de/record/163322/files/DZNE-2022-00102_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/163322/files/DZNE-2022-00102_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:163322
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9000620
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 26
|6 P:(DE-2719)9000836
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 28
|6 P:(DE-2719)2812913
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 36
|6 P:(DE-2719)2812386
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 49
|6 P:(DE-2719)2811660
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-09
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b CELL : 2021
|d 2022-11-09
920 1 _ |0 I:(DE-2719)1013031
|k Schultze - PRECISE
|l Platform for Single Cell Genomics and Epigenomics
|x 0
920 1 _ |0 I:(DE-2719)5000031
|k R&D PRECISE
|l Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn
|x 1
920 1 _ |0 I:(DE-2719)1810007
|k AG Heppner
|l Neuroimmunology
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013031
980 _ _ |a I:(DE-2719)5000031
980 _ _ |a I:(DE-2719)1810007
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21