001     163366
005     20230915092418.0
024 7 _ |a 10.3390/cells10102777
|2 doi
024 7 _ |a pmid:34685757
|2 pmid
024 7 _ |a pmc:PMC8534399
|2 pmc
024 7 _ |a altmetric:115733057
|2 altmetric
037 _ _ |a DZNE-2022-00129
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Kilo, Lukas
|0 P:(DE-2719)9001797
|b 0
|e First author
|u dzne
245 _ _ |a Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them.
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655470934_22304
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY)
520 _ _ |a Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's 'antennae'. Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a actin
|2 Other
650 _ 7 |a dendrite arborization (da) neurons
|2 Other
650 _ 7 |a neuronal dendrites
|2 Other
650 _ 7 |a time-lapse imaging
|2 Other
650 _ 7 |a Actins
|2 NLM Chemicals
650 _ 2 |a Actins: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Cell Differentiation
|2 MeSH
650 _ 2 |a Dendrites: metabolism
|2 MeSH
650 _ 2 |a Drosophila: metabolism
|2 MeSH
700 1 _ |a Stürner, Tomke
|0 P:(DE-2719)2811009
|b 1
|u dzne
700 1 _ |a Tavosanis, Gaia
|0 P:(DE-2719)2810271
|b 2
|u dzne
700 1 _ |a Ziegler, Anna B
|b 3
770 _ _ |a Molecular Mechanisms of Neuronal Actin Cytoskeleton Dynamics
773 _ _ |a 10.3390/cells10102777
|g Vol. 10, no. 10, p. 2777 -
|0 PERI:(DE-600)2661518-6
|n 10
|p 2777
|t Cells
|v 10
|y 2021
|x 2073-4409
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163366/files/DZNE-2022-00129.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163366/files/DZNE-2022-00129.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163366
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001797
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-2719)2811009
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810271
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELLS-BASEL : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-01-07T08:42:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-01-07T08:42:17Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-01-07T08:42:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELLS-BASEL : 2021
|d 2022-11-30
920 1 _ |0 I:(DE-2719)1013018
|k AG Tavosanis
|l Dynamics of neuronal circuits
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013018
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21