001     163387
005     20230915090517.0
024 7 _ |a 10.3389/fneur.2022.813282
|2 doi
024 7 _ |a pmid:35250820
|2 pmid
024 7 _ |a pmc:PMC8894665
|2 pmc
024 7 _ |a altmetric:123297679
|2 altmetric
037 _ _ |a DZNE-2022-00149
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pignolo, Loris
|b 0
245 _ _ |a ROBOCOP (ROBOtic Care of Poststroke Pain): Study Protocol for a Randomized Trial to Assess Robot-Assisted Functional and Motor Recovery and Impact on Poststroke Pain Development.
260 _ _ |a Lausanne
|c 2022
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654866169_23356
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Stroke is one of the most frequent causes of death and disability worldwide. It is accompanied by the impaired motor function of the upper extremities in over 69% of patients up to hemiplegia in the following 5 years in 56% of cases. This condition often is characterized by chronic poststroke pain, difficult to manage, further worsening quality of life. Poststroke pain occurs within 3-6 months. Robot-assisted neurorehabilitation using the Automatic Recovery Arm Motility Integrated System (ARAMIS) has proven efficacy in motor function recovery exploiting the movements and the strength of the unaffected arm. The rationale of the ROBOCOP (ROBOtic Care of Poststroke pain) randomized trial is the assessment of the impact of robot-assisted functional and motor recovery on the prevention of poststroke pain.A total of 118 patients with hemiplegic arms due to stroke will be enrolled and randomly allocated with a 1:1 ratio to ARAMIS or conventional neurorehabilitation group. After a baseline screening at hospital discharge, ARAMIS or conventional rehabilitation will be performed for 8 weeks. The primary endpoint is the prevention of the development of poststroke pain and the secondary endpoints are prevention of spasticity and efficacy in clinical motor rehabilitation. The primary outcome measures consist in the visual analog scale and the doleur neuropatique 4 and the secondary outcome measures include: the Modified Ashworth Scale, the Resistance to Passive movement Scale; the Upper Extremity Subscale of the Fugl-Meyer Motor Assessment; the Action Research Arm Test; the Barthel Index for activities of daily living; and the magnetic resonance imaging (MRI) recovery-related parameters. After baseline, both primary and secondary outcome measures will be performed in the following time points: 1 month after stroke (t 1, half of the rehabilitation); 2 months after stroke (t 2, after rehabilitation); and 3 months (t 3) and 6 months (t 4) after stroke, critical for poststroke pain development.This is the first clinical trial investigating the efficacy of robot-assisted neurorehabilitation using ARAMIS on poststroke pain prevention. This study could remarkably improve the quality of life of stroke survivors.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a ARAMIS
|2 Other
650 _ 7 |a motor rehabilitation
|2 Other
650 _ 7 |a post-stroke pain
|2 Other
650 _ 7 |a robot-assisted neurorehabilitation
|2 Other
650 _ 7 |a stroke recovery
|2 Other
700 1 _ |a Tonin, Paolo
|b 1
700 1 _ |a Nicotera, Pierluigi
|0 P:(DE-2719)2010732
|b 2
|u dzne
700 1 _ |a Bagetta, Giacinto
|b 3
700 1 _ |a Scuteri, Damiana
|b 4
773 _ _ |a 10.3389/fneur.2022.813282
|g Vol. 13, p. 813282
|0 PERI:(DE-600)2564214-5
|p 813282
|t Frontiers in neurology
|v 13
|y 2022
|x 1664-2295
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163387/files/DZNE-2022-00149.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163387/files/DZNE-2022-00149.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163387
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2010732
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROL : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-11T13:11:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-11T13:11:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-11T13:11:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-18
920 1 _ |0 I:(DE-2719)1013003
|k AG Bano
|l Aging and neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1030000
|k Scientific board
|l Scientific board
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013003
980 _ _ |a I:(DE-2719)1030000
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21