001     163396
005     20240320115517.0
024 7 _ |a 10.1016/j.cmet.2021.10.004
|2 doi
024 7 _ |a pmid:34715039
|2 pmid
024 7 _ |a 1550-4131
|2 ISSN
024 7 _ |a 1932-7420
|2 ISSN
024 7 _ |a altmetric:115903501
|2 altmetric
037 _ _ |a DZNE-2022-00158
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Willenborg, Sebastian
|b 0
245 _ _ |a Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing.
260 _ _ |a Cambridge, Mass.
|c 2021
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654853378_23357
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY)
520 _ _ |a Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a metabolism
|2 Other
650 _ 7 |a mitochondria
|2 Other
650 _ 7 |a mitochondrial repurposing
|2 Other
650 _ 7 |a mitohormesis
|2 Other
650 _ 7 |a monocyte/macrophage
|2 Other
650 _ 7 |a tissue repair
|2 Other
650 _ 7 |a type 2 immunity
|2 Other
650 _ 7 |a wound healing
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Macrophages: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mitochondria: metabolism
|2 MeSH
650 _ 2 |a Wound Healing
|2 MeSH
700 1 _ |a Sanin, David E
|b 1
700 1 _ |a Jais, Alexander
|b 2
700 1 _ |a Ding, Xiaolei
|b 3
700 1 _ |a Ulas, Thomas
|0 P:(DE-2719)9000845
|b 4
|u dzne
700 1 _ |a Nüchel, Julian
|b 5
700 1 _ |a Popović, Milica
|b 6
700 1 _ |a MacVicar, Thomas
|b 7
700 1 _ |a Langer, Thomas
|b 8
700 1 _ |a Schultze, Joachim L
|0 P:(DE-2719)2811660
|b 9
|u dzne
700 1 _ |a Gerbaulet, Alexander
|b 10
700 1 _ |a Roers, Axel
|b 11
700 1 _ |a Pearce, Edward J
|b 12
700 1 _ |a Brüning, Jens C
|b 13
700 1 _ |a Trifunovic, Aleksandra
|b 14
700 1 _ |a Eming, Sabine A
|b 15
773 _ _ |a 10.1016/j.cmet.2021.10.004
|g Vol. 33, no. 12, p. 2398 - 2414.e9
|0 PERI:(DE-600)2174469-5
|n 12
|p 2398 - 2414.e9
|t Cell metabolism
|v 33
|y 2021
|x 1550-4131
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163396/files/DZNE-2022-00158.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163396/files/DZNE-2022-00158.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163396
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000845
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2811660
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL METAB : 2021
|d 2022-11-22
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b CELL METAB : 2021
|d 2022-11-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
920 1 _ |0 I:(DE-2719)1013031
|k AG Schultze
|l United epigenomic platform
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013031
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21