000163420 001__ 163420
000163420 005__ 20240320115518.0
000163420 0247_ $$2doi$$a10.1093/cercor/bhab226
000163420 0247_ $$2pmid$$apmid:34379749
000163420 0247_ $$2pmc$$apmc:PMC8841565
000163420 0247_ $$2ISSN$$a1047-3211
000163420 0247_ $$2ISSN$$a1460-2199
000163420 0247_ $$2altmetric$$aaltmetric:113528751
000163420 037__ $$aDZNE-2022-00180
000163420 041__ $$aEnglish
000163420 082__ $$a610
000163420 1001_ $$aStrauch, Christina$$b0
000163420 245__ $$aOlfactory Information Storage Engages Subcortical and Cortical Brain Regions That Support Valence Determination.
000163420 260__ $$aOxford$$bOxford Univ. Press$$c2022
000163420 3367_ $$2DRIVER$$aarticle
000163420 3367_ $$2DataCite$$aOutput Types/Journal article
000163420 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655198171_923
000163420 3367_ $$2BibTeX$$aARTICLE
000163420 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163420 3367_ $$00$$2EndNote$$aJournal Article
000163420 500__ $$a(CC BY-NC)
000163420 520__ $$aThe olfactory bulb (OB) delivers sensory information to the piriform cortex (PC) and other components of the olfactory system. OB-PC synapses have been reported to express short-lasting forms of synaptic plasticity, whereas long-term potentiation (LTP) of the anterior PC (aPC) occurs predominantly by activating inputs from the prefrontal cortex. This suggests that brain regions outside the olfactory system may contribute to olfactory information processing and storage. Here, we compared functional magnetic resonance imaging BOLD responses triggered during 20 or 100 Hz stimulation of the OB. We detected BOLD signal increases in the anterior olfactory nucleus (AON), PC and entorhinal cortex, nucleus accumbens, dorsal striatum, ventral diagonal band of Broca, prelimbic-infralimbic cortex (PrL-IL), dorsal medial prefrontal cortex, and basolateral amygdala. Significantly stronger BOLD responses occurred in the PrL-IL, PC, and AON during 100 Hz compared with 20 Hz OB stimulation. LTP in the aPC was concomitantly induced by 100 Hz stimulation. Furthermore, 100 Hz stimulation triggered significant nuclear immediate early gene expression in aPC, AON, and PrL-IL. The involvement of the PrL-IL in this process is consistent with its putative involvement in modulating behavioral responses to odor experience. Furthermore, these results indicate that OB-mediated information storage by the aPC is embedded in a connectome that supports valence evaluation.
000163420 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000163420 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000163420 650_7 $$2Other$$afMRI
000163420 650_7 $$2Other$$aimmediate early gene
000163420 650_7 $$2Other$$aolfactory system
000163420 650_7 $$2Other$$aprelimbic cortex
000163420 650_7 $$2Other$$asynaptic plasticity
000163420 650_2 $$2MeSH$$aInformation Storage and Retrieval
000163420 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000163420 650_2 $$2MeSH$$aOlfactory Bulb: physiology
000163420 650_2 $$2MeSH$$aPiriform Cortex: physiology
000163420 650_2 $$2MeSH$$aSmell: physiology
000163420 7001_ $$aHoang, Thu-Huong$$b1
000163420 7001_ $$0P:(DE-2719)2810456$$aAngenstein, Frank$$b2$$udzne
000163420 7001_ $$aManahan-Vaughan, Denise$$b3
000163420 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhab226$$gVol. 32, no. 4, p. 689 - 708$$n4$$p689 - 708$$tCerebral cortex$$v32$$x1460-2199$$y2022
000163420 8564_ $$uhttps://pub.dzne.de/record/163420/files/DZNE-2022-00180.pdf$$yOpenAccess
000163420 8564_ $$uhttps://pub.dzne.de/record/163420/files/DZNE-2022-00180.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000163420 909CO $$ooai:pub.dzne.de:163420$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000163420 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810456$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000163420 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000163420 9141_ $$y2022
000163420 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000163420 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000163420 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000163420 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-26
000163420 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2021$$d2022-11-11
000163420 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000163420 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000163420 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000163420 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000163420 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000163420 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000163420 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000163420 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-11$$wger
000163420 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000163420 9201_ $$0I:(DE-2719)1310004$$kAG Angenstein$$lFunctional Neuroimaging$$x0
000163420 980__ $$ajournal
000163420 980__ $$aVDB
000163420 980__ $$aUNRESTRICTED
000163420 980__ $$aI:(DE-2719)1310004
000163420 9801_ $$aFullTexts