000163482 001__ 163482
000163482 005__ 20230915090522.0
000163482 0247_ $$2doi$$a10.1038/s41467-022-28080-7
000163482 0247_ $$2pmid$$apmid:35058465
000163482 0247_ $$2pmc$$apmc:PMC8776779
000163482 0247_ $$2altmetric$$aaltmetric:121292945
000163482 037__ $$aDZNE-2022-00242
000163482 041__ $$aEnglish
000163482 082__ $$a500
000163482 1001_ $$00000-0001-9335-9749$$aLansing, Felix$$b0
000163482 245__ $$aCorrection of a Factor VIII genomic inversion with designer-recombinases.
000163482 260__ $$a[London]$$bNature Publishing Group UK$$c2022
000163482 3367_ $$2DRIVER$$aarticle
000163482 3367_ $$2DataCite$$aOutput Types/Journal article
000163482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654869941_23357
000163482 3367_ $$2BibTeX$$aARTICLE
000163482 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163482 3367_ $$00$$2EndNote$$aJournal Article
000163482 520__ $$aDespite advances in nuclease-based genome editing technologies, correcting human disease-causing genomic inversions remains a challenge. Here, we describe the potential use of a recombinase-based system to correct the 140 kb inversion of the F8 gene frequently found in patients diagnosed with severe Hemophilia A. Employing substrate-linked directed molecular evolution, we develop a coupled heterodimeric recombinase system (RecF8) achieving 30% inversion of the target sequence in human tissue culture cells. Transient RecF8 treatment of endothelial cells, differentiated from patient-derived induced pluripotent stem cells (iPSCs) of a hemophilic donor, results in 12% correction of the inversion and restores Factor VIII mRNA expression. In this work, we present designer-recombinases as an efficient and specific means towards treatment of monogenic diseases caused by large gene inversions.
000163482 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000163482 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000163482 650_7 $$2NLM Chemicals$$aRecombinases
000163482 650_7 $$09001-27-8$$2NLM Chemicals$$aFactor VIII
000163482 650_2 $$2MeSH$$aAmino Acid Sequence
000163482 650_2 $$2MeSH$$aBase Sequence
000163482 650_2 $$2MeSH$$aCell Differentiation
000163482 650_2 $$2MeSH$$aChromosome Inversion: genetics
000163482 650_2 $$2MeSH$$aClone Cells
000163482 650_2 $$2MeSH$$aDirected Molecular Evolution
000163482 650_2 $$2MeSH$$aEndothelial Cells: cytology
000163482 650_2 $$2MeSH$$aEndothelial Cells: metabolism
000163482 650_2 $$2MeSH$$aExons: genetics
000163482 650_2 $$2MeSH$$aFactor VIII: genetics
000163482 650_2 $$2MeSH$$aHEK293 Cells
000163482 650_2 $$2MeSH$$aHeLa Cells
000163482 650_2 $$2MeSH$$aHumans
000163482 650_2 $$2MeSH$$aInduced Pluripotent Stem Cells: metabolism
000163482 650_2 $$2MeSH$$aInverted Repeat Sequences: genetics
000163482 650_2 $$2MeSH$$aRecombinases: metabolism
000163482 650_2 $$2MeSH$$aRecombination, Genetic: genetics
000163482 650_2 $$2MeSH$$aSubstrate Specificity
000163482 650_2 $$2MeSH$$aWhole Genome Sequencing
000163482 7001_ $$aMukhametzyanova, Liliya$$b1
000163482 7001_ $$00000-0001-8660-9690$$aRojo-Romanos, Teresa$$b2
000163482 7001_ $$aIwasawa, Kentaro$$b3
000163482 7001_ $$aKimura, Masaki$$b4
000163482 7001_ $$00000-0002-8245-6006$$aPaszkowski-Rogacz, Maciej$$b5
000163482 7001_ $$aKarpinski, Janet$$b6
000163482 7001_ $$0P:(DE-2719)9000564$$aGrass, Tobias$$b7$$udzne
000163482 7001_ $$aSonntag, Jan$$b8
000163482 7001_ $$00000-0001-5164-316X$$aSchneider, Paul Martin$$b9
000163482 7001_ $$00000-0001-9475-9533$$aGünes, Ceren$$b10
000163482 7001_ $$00000-0002-1014-9859$$aHoersten, Jenna$$b11
000163482 7001_ $$00000-0002-5455-4901$$aSchmitt, Lukas Theo$$b12
000163482 7001_ $$0P:(DE-2719)9000726$$aRodriguez-Muela, Natalia$$b13$$udzne
000163482 7001_ $$aKnöfler, Ralf$$b14
000163482 7001_ $$00000-0002-6989-3041$$aTakebe, Takanori$$b15
000163482 7001_ $$00000-0002-4577-3344$$aBuchholz, Frank$$b16
000163482 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-28080-7$$gVol. 13, no. 1, p. 422$$n1$$p422$$tNature Communications$$v13$$x2041-1723$$y2022
000163482 8564_ $$uhttps://pub.dzne.de/record/163482/files/DZNE-2022-00242.pdf$$yOpenAccess
000163482 8564_ $$uhttps://pub.dzne.de/record/163482/files/DZNE-2022-00242.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000163482 909CO $$ooai:pub.dzne.de:163482$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000163482 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000564$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000163482 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000726$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b13$$kDZNE
000163482 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000163482 9141_ $$y2022
000163482 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000163482 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000163482 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000163482 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000163482 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000163482 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000163482 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000163482 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000163482 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000163482 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000163482 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000163482 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000163482 9201_ $$0I:(DE-2719)1713001$$kAG Rodriguez-Muela$$lSelective Neuronal Vulnerability in Neurodegenerative Diseases$$x0
000163482 980__ $$ajournal
000163482 980__ $$aVDB
000163482 980__ $$aUNRESTRICTED
000163482 980__ $$aI:(DE-2719)1713001
000163482 9801_ $$aFullTexts