000163494 001__ 163494 000163494 005__ 20240320115519.0 000163494 0247_ $$2doi$$a10.1016/j.expneurol.2022.113978 000163494 0247_ $$2pmid$$apmid:35026227 000163494 0247_ $$2ISSN$$a0014-4886 000163494 0247_ $$2ISSN$$a1090-2430 000163494 0247_ $$2altmetric$$aaltmetric:120808206 000163494 037__ $$aDZNE-2022-00254 000163494 041__ $$aEnglish 000163494 082__ $$a610 000163494 1001_ $$aAndree, Andrea$$b0 000163494 245__ $$aDeep brain stimulation electrode modeling in rats. 000163494 260__ $$aOrlando, Fla.$$bAcademic Press$$c2022 000163494 3367_ $$2DRIVER$$aarticle 000163494 3367_ $$2DataCite$$aOutput Types/Journal article 000163494 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655204204_923 000163494 3367_ $$2BibTeX$$aARTICLE 000163494 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000163494 3367_ $$00$$2EndNote$$aJournal Article 000163494 500__ $$a(CC BY-NC-ND) 000163494 520__ $$aDeep Brain Stimulation (DBS) is an efficacious treatment option for an increasing range of brain disorders. To enhance our knowledge about the mechanisms of action of DBS and to probe novel targets, basic research in animal models with DBS is an essential research base. Beyond nonhuman primate, pig, and mouse models, the rat is a widely used animal model for probing DBS effects in basic research. Reconstructing DBS electrode placement after surgery is crucial to associate observed effects with modulating a specific target structure. Post-mortem histology is a commonly used method for reconstructing the electrode location. In humans, however, neuroimaging-based electrode localizations have become established. For this reason, we adapt the open-source software pipeline Lead-DBS for DBS electrode localizations from humans to the rat model. We validate our localization results by inter-rater concordance and a comparison with the conventional histological method. Finally, using the open-source software pipeline OSS-DBS, we demonstrate the subject-specific simulation of the VTA and the activation of axon models aligned to pathways representing neuronal fibers, also known as the pathway activation model. Both activation models yield a characterization of the impact of DBS on the target area. Our results suggest that the proposed neuroimaging-based method can precisely localize DBS electrode placements that are essentially rater-independent and yield results comparable to the histological gold standard. The advantages of neuroimaging-based electrode localizations are the possibility of acquiring them in vivo and combining electrode reconstructions with advanced imaging metrics, such as those obtained from diffusion or functional magnetic resonance imaging (MRI). This paper introduces a freely available open-source pipeline for DBS electrode reconstructions in rats. The presented initial validation results are promising. 000163494 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0 000163494 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de 000163494 650_7 $$2Other$$aAnimal models 000163494 650_7 $$2Other$$aDeep brain stimulation 000163494 650_7 $$2Other$$aNeuroimaging 000163494 650_7 $$2Other$$aOpen-source 000163494 650_7 $$2Other$$aParkinson's disease 000163494 650_7 $$2Other$$aRat 000163494 650_7 $$2Other$$aResearch software 000163494 650_7 $$2Other$$aRodent 000163494 650_2 $$2MeSH$$aAnimals 000163494 650_2 $$2MeSH$$aAxons 000163494 650_2 $$2MeSH$$aDeep Brain Stimulation 000163494 650_2 $$2MeSH$$aElectrodes, Implanted 000163494 650_2 $$2MeSH$$aMagnetic Resonance Imaging 000163494 650_2 $$2MeSH$$aMale 000163494 650_2 $$2MeSH$$aModels, Animal 000163494 650_2 $$2MeSH$$aModels, Neurological 000163494 650_2 $$2MeSH$$aNeuroimaging 000163494 650_2 $$2MeSH$$aRats 000163494 650_2 $$2MeSH$$aReproducibility of Results 000163494 650_2 $$2MeSH$$aSoftware 000163494 650_2 $$2MeSH$$aVentral Tegmental Area: diagnostic imaging 000163494 7001_ $$aLi, Ningfei$$b1 000163494 7001_ $$aButenko, Konstantin$$b2 000163494 7001_ $$aKober, Maria$$b3 000163494 7001_ $$aChen, Jia Zhi$$b4 000163494 7001_ $$aHiguchi, Takahiro$$b5 000163494 7001_ $$0P:(DE-2719)9000068$$aFauser, Mareike$$b6$$udzne 000163494 7001_ $$0P:(DE-2719)9000306$$aStorch, Alexander$$b7$$udzne 000163494 7001_ $$aIp, Chi Wang$$b8 000163494 7001_ $$0P:(DE-2719)2811089$$aKühn, Andrea$$b9$$udzne 000163494 7001_ $$aHorn, Andreas$$b10 000163494 7001_ $$avan Rienen, Ursula$$b11 000163494 773__ $$0PERI:(DE-600)1466932-8$$a10.1016/j.expneurol.2022.113978$$gVol. 350, p. 113978 -$$p113978$$tExperimental neurology$$v350$$x0014-4886$$y2022 000163494 8564_ $$uhttps://pub.dzne.de/record/163494/files/DZNE-2022-00254.pdf$$yOpenAccess 000163494 8564_ $$uhttps://pub.dzne.de/record/163494/files/DZNE-2022-00254.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000163494 909CO $$ooai:pub.dzne.de:163494$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000163494 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9000068$$aExternal Institute$$b6$$kExtern 000163494 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000306$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE 000163494 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2811089$$aExternal Institute$$b9$$kExtern 000163494 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0 000163494 9141_ $$y2022 000163494 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10 000163494 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10 000163494 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-10 000163494 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03 000163494 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-10 000163494 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000163494 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP NEUROL : 2021$$d2022-11-10 000163494 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03 000163494 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-10 000163494 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000163494 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10 000163494 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-10 000163494 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEXP NEUROL : 2021$$d2022-11-10 000163494 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03 000163494 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-10$$wger 000163494 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10 000163494 9201_ $$0I:(DE-2719)5000014$$kAG Storch 2 Rostock$$lNon-motor symptoms in Parkinson's disease$$x0 000163494 980__ $$ajournal 000163494 980__ $$aVDB 000163494 980__ $$aUNRESTRICTED 000163494 980__ $$aI:(DE-2719)5000014 000163494 9801_ $$aFullTexts