001     163494
005     20240320115519.0
024 7 _ |a 10.1016/j.expneurol.2022.113978
|2 doi
024 7 _ |a pmid:35026227
|2 pmid
024 7 _ |a 0014-4886
|2 ISSN
024 7 _ |a 1090-2430
|2 ISSN
024 7 _ |a altmetric:120808206
|2 altmetric
037 _ _ |a DZNE-2022-00254
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Andree, Andrea
|b 0
245 _ _ |a Deep brain stimulation electrode modeling in rats.
260 _ _ |a Orlando, Fla.
|c 2022
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655204204_923
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY-NC-ND)
520 _ _ |a Deep Brain Stimulation (DBS) is an efficacious treatment option for an increasing range of brain disorders. To enhance our knowledge about the mechanisms of action of DBS and to probe novel targets, basic research in animal models with DBS is an essential research base. Beyond nonhuman primate, pig, and mouse models, the rat is a widely used animal model for probing DBS effects in basic research. Reconstructing DBS electrode placement after surgery is crucial to associate observed effects with modulating a specific target structure. Post-mortem histology is a commonly used method for reconstructing the electrode location. In humans, however, neuroimaging-based electrode localizations have become established. For this reason, we adapt the open-source software pipeline Lead-DBS for DBS electrode localizations from humans to the rat model. We validate our localization results by inter-rater concordance and a comparison with the conventional histological method. Finally, using the open-source software pipeline OSS-DBS, we demonstrate the subject-specific simulation of the VTA and the activation of axon models aligned to pathways representing neuronal fibers, also known as the pathway activation model. Both activation models yield a characterization of the impact of DBS on the target area. Our results suggest that the proposed neuroimaging-based method can precisely localize DBS electrode placements that are essentially rater-independent and yield results comparable to the histological gold standard. The advantages of neuroimaging-based electrode localizations are the possibility of acquiring them in vivo and combining electrode reconstructions with advanced imaging metrics, such as those obtained from diffusion or functional magnetic resonance imaging (MRI). This paper introduces a freely available open-source pipeline for DBS electrode reconstructions in rats. The presented initial validation results are promising.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Animal models
|2 Other
650 _ 7 |a Deep brain stimulation
|2 Other
650 _ 7 |a Neuroimaging
|2 Other
650 _ 7 |a Open-source
|2 Other
650 _ 7 |a Parkinson's disease
|2 Other
650 _ 7 |a Rat
|2 Other
650 _ 7 |a Research software
|2 Other
650 _ 7 |a Rodent
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Axons
|2 MeSH
650 _ 2 |a Deep Brain Stimulation
|2 MeSH
650 _ 2 |a Electrodes, Implanted
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Models, Animal
|2 MeSH
650 _ 2 |a Models, Neurological
|2 MeSH
650 _ 2 |a Neuroimaging
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
650 _ 2 |a Software
|2 MeSH
650 _ 2 |a Ventral Tegmental Area: diagnostic imaging
|2 MeSH
700 1 _ |a Li, Ningfei
|b 1
700 1 _ |a Butenko, Konstantin
|b 2
700 1 _ |a Kober, Maria
|b 3
700 1 _ |a Chen, Jia Zhi
|b 4
700 1 _ |a Higuchi, Takahiro
|b 5
700 1 _ |a Fauser, Mareike
|0 P:(DE-2719)9000068
|b 6
|u dzne
700 1 _ |a Storch, Alexander
|0 P:(DE-2719)9000306
|b 7
|u dzne
700 1 _ |a Ip, Chi Wang
|b 8
700 1 _ |a Kühn, Andrea
|0 P:(DE-2719)2811089
|b 9
|u dzne
700 1 _ |a Horn, Andreas
|b 10
700 1 _ |a van Rienen, Ursula
|b 11
773 _ _ |a 10.1016/j.expneurol.2022.113978
|g Vol. 350, p. 113978 -
|0 PERI:(DE-600)1466932-8
|p 113978
|t Experimental neurology
|v 350
|y 2022
|x 0014-4886
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163494/files/DZNE-2022-00254.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163494/files/DZNE-2022-00254.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163494
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-2719)9000068
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9000306
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-2719)2811089
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-10
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EXP NEUROL : 2021
|d 2022-11-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EXP NEUROL : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
920 1 _ |0 I:(DE-2719)5000014
|k AG Storch 2 Rostock
|l Non-motor symptoms in Parkinson's disease
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000014
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21