| Home > Publications Database > Direct Interaction of ATP7B and LC3B Proteins Suggests a Cooperative Role of Copper Transportation and Autophagy. > print |
| 001 | 163508 | ||
| 005 | 20230915092422.0 | ||
| 024 | 7 | _ | |a 10.3390/cells10113118 |2 doi |
| 024 | 7 | _ | |a pmid:34831341 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC8625360 |2 pmc |
| 024 | 7 | _ | |a altmetric:117862002 |2 altmetric |
| 037 | _ | _ | |a DZNE-2022-00268 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Pantoom, Supansa |b 0 |
| 245 | _ | _ | |a Direct Interaction of ATP7B and LC3B Proteins Suggests a Cooperative Role of Copper Transportation and Autophagy. |
| 260 | _ | _ | |a Basel |c 2021 |b MDPI |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1655461434_22301 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a (CC BY) |
| 520 | _ | _ | |a Macroautophagy/autophagy plays an important role in cellular copper clearance. The means by which the copper metabolism and autophagy pathways interact mechanistically is vastly unexplored. Dysfunctional ATP7B, a copper-transporting ATPase, is involved in the development of monogenic Wilson disease, a disorder characterized by disturbed copper transport. Using in silico prediction, we found that ATP7B contains a number of potential binding sites for LC3, a central protein in the autophagy pathway, the so-called LC3 interaction regions (LIRs). The conserved LIR3, located at the C-terminal end of ATP7B, was found to directly interact with LC3B in vitro. Replacing the two conserved hydrophobic residues W1452 and L1455 of LIR3 significantly reduced interaction. Furthermore, autophagy was induced in normal human hepatocellular carcinoma cells (HepG2) leading to enhanced colocalization of ATP7B and LC3B on the autophagosome membranes. By contrast, HepG2 cells deficient of ATP7B (HepG2 ATP7B-/-) showed autophagy deficiency at elevated copper condition. This phenotype was complemented by heterologous ATP7B expression. These findings suggest a cooperative role of ATP7B and LC3B in autophagy-mediated copper clearance. |
| 536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a ATPase copper transporting beta |2 Other |
| 650 | _ | 7 | |a HepG2 |2 Other |
| 650 | _ | 7 | |a LC3 interaction region |2 Other |
| 650 | _ | 7 | |a Wilson disease |2 Other |
| 650 | _ | 7 | |a autophagosome-lysosome fusion |2 Other |
| 650 | _ | 7 | |a MAP1LC3B protein, human |2 NLM Chemicals |
| 650 | _ | 7 | |a Microtubule-Associated Proteins |2 NLM Chemicals |
| 650 | _ | 7 | |a Copper |0 789U1901C5 |2 NLM Chemicals |
| 650 | _ | 7 | |a ATP7B protein, human |0 EC 7.2.2.8 |2 NLM Chemicals |
| 650 | _ | 7 | |a Copper-Transporting ATPases |0 EC 7.2.2.8 |2 NLM Chemicals |
| 650 | _ | 2 | |a Amino Acid Sequence |2 MeSH |
| 650 | _ | 2 | |a Biological Transport: drug effects |2 MeSH |
| 650 | _ | 2 | |a Copper: metabolism |2 MeSH |
| 650 | _ | 2 | |a Copper: pharmacology |2 MeSH |
| 650 | _ | 2 | |a Copper-Transporting ATPases: chemistry |2 MeSH |
| 650 | _ | 2 | |a Copper-Transporting ATPases: metabolism |2 MeSH |
| 650 | _ | 2 | |a Hep G2 Cells |2 MeSH |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Microtubule-Associated Proteins: metabolism |2 MeSH |
| 650 | _ | 2 | |a Protein Binding: drug effects |2 MeSH |
| 650 | _ | 2 | |a Protein Transport: drug effects |2 MeSH |
| 700 | 1 | _ | |a Pomorski, Adam |0 0000-0002-0669-3421 |b 1 |
| 700 | 1 | _ | |a Huth, Katharina |b 2 |
| 700 | 1 | _ | |a Hund, Christina |b 3 |
| 700 | 1 | _ | |a Petters, Janine |b 4 |
| 700 | 1 | _ | |a Krężel, Artur |0 0000-0001-9252-5784 |b 5 |
| 700 | 1 | _ | |a Hermann, Andreas |0 P:(DE-2719)2811732 |b 6 |u dzne |
| 700 | 1 | _ | |a Lukas, Jan |b 7 |
| 770 | _ | _ | |a The Autophagic Process in Human Physiology and Pathogenesis |
| 773 | _ | _ | |a 10.3390/cells10113118 |g Vol. 10, no. 11, p. 3118 - |0 PERI:(DE-600)2661518-6 |n 11 |p 3118 |t Cells |v 10 |y 2021 |x 2073-4409 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/163508/files/DZNE-2022-00268.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/163508/files/DZNE-2022-00268.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:163508 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2811732 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-05-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELLS-BASEL : 2021 |d 2022-11-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-01-07T08:42:17Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-01-07T08:42:17Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-01-07T08:42:17Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-30 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-30 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELLS-BASEL : 2021 |d 2022-11-30 |
| 920 | 1 | _ | |0 I:(DE-2719)1510100 |k AG Teipel |l Clinical Dementia Research Rostock /Greifswald |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1510100 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|