000163625 001__ 163625
000163625 005__ 20230915092425.0
000163625 0247_ $$2doi$$a10.1038/s41467-021-27462-7
000163625 0247_ $$2pmid$$apmid:34880248
000163625 0247_ $$2pmc$$apmc:PMC8654841
000163625 0247_ $$2altmetric$$aaltmetric:118400877
000163625 037__ $$aDZNE-2022-00371
000163625 041__ $$aEnglish
000163625 082__ $$a500
000163625 1001_ $$00000-0003-4757-9462$$aDankovich, Tal M$$b0
000163625 245__ $$aExtracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R.
000163625 260__ $$a[London]$$bNature Publishing Group UK$$c2021
000163625 3367_ $$2DRIVER$$aarticle
000163625 3367_ $$2DataCite$$aOutput Types/Journal article
000163625 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655197176_927
000163625 3367_ $$2BibTeX$$aARTICLE
000163625 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163625 3367_ $$00$$2EndNote$$aJournal Article
000163625 520__ $$aThe brain extracellular matrix (ECM) consists of extremely long-lived proteins that assemble around neurons and synapses, to stabilize them. The ECM is thought to change only rarely, in relation to neuronal plasticity, through ECM proteolysis and renewed protein synthesis. We report here an alternative ECM remodeling mechanism, based on the recycling of ECM molecules. Using multiple ECM labeling and imaging assays, from super-resolution optical imaging to nanoscale secondary ion mass spectrometry, both in culture and in brain slices, we find that a key ECM protein, Tenascin-R, is frequently endocytosed, and later resurfaces, preferentially near synapses. The TNR molecules complete this cycle within ~3 days, in an activity-dependent fashion. Interfering with the recycling process perturbs severely neuronal function, strongly reducing synaptic vesicle exo- and endocytosis. We conclude that the neuronal ECM can be remodeled frequently through mechanisms that involve endocytosis and recycling of ECM proteins.
000163625 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000163625 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000163625 650_7 $$2NLM Chemicals$$aEpitopes
000163625 650_7 $$2NLM Chemicals$$aExtracellular Matrix Proteins
000163625 650_7 $$2NLM Chemicals$$aMembrane Transport Proteins
000163625 650_7 $$2NLM Chemicals$$aTenascin
000163625 650_7 $$0147604-77-1$$2NLM Chemicals$$atenascin R
000163625 650_2 $$2MeSH$$aAnimals
000163625 650_2 $$2MeSH$$aBrain: metabolism
000163625 650_2 $$2MeSH$$aEndocytosis
000163625 650_2 $$2MeSH$$aEpitopes
000163625 650_2 $$2MeSH$$aExtracellular Matrix: metabolism
000163625 650_2 $$2MeSH$$aExtracellular Matrix Proteins: metabolism
000163625 650_2 $$2MeSH$$aGolgi Apparatus
000163625 650_2 $$2MeSH$$aMale
000163625 650_2 $$2MeSH$$aMembrane Transport Proteins: metabolism
000163625 650_2 $$2MeSH$$aMice
000163625 650_2 $$2MeSH$$aMice, Inbred C57BL
000163625 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000163625 650_2 $$2MeSH$$aNeurons: metabolism
000163625 650_2 $$2MeSH$$aSynapses: metabolism
000163625 650_2 $$2MeSH$$aTenascin: metabolism
000163625 7001_ $$0P:(DE-2719)2811394$$aKaushik, Rahul$$b1$$udzne
000163625 7001_ $$aOlsthoorn, Linda H M$$b2
000163625 7001_ $$00000-0002-4546-0567$$aPetersen, Gabriel Cassinelli$$b3
000163625 7001_ $$aGiro, Philipp Emanuel$$b4
000163625 7001_ $$00000-0002-0505-8231$$aKluever, Verena$$b5
000163625 7001_ $$00000-0002-2313-1439$$aAgüi-Gonzalez, Paola$$b6
000163625 7001_ $$aGrewe, Katharina$$b7
000163625 7001_ $$aBao, Guobin$$b8
000163625 7001_ $$aBeuermann, Sabine$$b9
000163625 7001_ $$aHadi, Hannah Abdul$$b10
000163625 7001_ $$00000-0002-4600-3683$$aDoeren, Jose$$b11
000163625 7001_ $$aKlöppner, Simon$$b12
000163625 7001_ $$00000-0003-2374-9922$$aCooper, Benjamin H$$b13
000163625 7001_ $$0P:(DE-2719)2810577$$aDityatev, Alexander$$b14$$udzne
000163625 7001_ $$00000-0002-1667-7839$$aRizzoli, Silvio O$$b15
000163625 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-021-27462-7$$gVol. 12, no. 1, p. 7129$$n1$$p7129$$tNature Communications$$v12$$x2041-1723$$y2021
000163625 8564_ $$uhttps://pub.dzne.de/record/163625/files/DZNE-2022-00371.pdf$$yOpenAccess
000163625 8564_ $$uhttps://pub.dzne.de/record/163625/files/DZNE-2022-00371.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000163625 909CO $$ooai:pub.dzne.de:163625$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000163625 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811394$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000163625 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810577$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b14$$kDZNE
000163625 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000163625 9141_ $$y2021
000163625 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000163625 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000163625 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000163625 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000163625 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000163625 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000163625 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000163625 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000163625 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000163625 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000163625 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000163625 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000163625 9201_ $$0I:(DE-2719)1310007$$kAG Dityatev$$lMolecular Neuroplasticity$$x0
000163625 980__ $$ajournal
000163625 980__ $$aVDB
000163625 980__ $$aUNRESTRICTED
000163625 980__ $$aI:(DE-2719)1310007
000163625 9801_ $$aFullTexts