| Home > Publications Database > Associations among locus coeruleus catecholamines, tau pathology, and memory in aging. > print |
| 001 | 163666 | ||
| 005 | 20240305152413.0 | ||
| 024 | 7 | _ | |a 1470-634X |2 ISSN |
| 024 | 7 | _ | |a 10.1038/s41386-022-01269-6 |2 doi |
| 024 | 7 | _ | |a pmid:35034099 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC8938463 |2 pmc |
| 024 | 7 | _ | |a 0893-133X |2 ISSN |
| 024 | 7 | _ | |a 1740-634X |2 ISSN |
| 024 | 7 | _ | |a altmetric:121053705 |2 altmetric |
| 037 | _ | _ | |a DZNE-2022-00412 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Ciampa, Claire J |b 0 |
| 245 | _ | _ | |a Associations among locus coeruleus catecholamines, tau pathology, and memory in aging. |
| 260 | _ | _ | |a Basingstoke |c 2022 |b Nature Publishing Group |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1709648623_29109 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The locus coeruleus (LC) is the brain's major source of the neuromodulator norepinephrine, and is also profoundly vulnerable to the development of Alzheimer's disease (AD)-related tau pathology. Norepinephrine plays a role in neuroprotective functions that may reduce AD progression, and also underlies optimal memory performance. Successful maintenance of LC neurochemical function represents a candidate mechanism of protection against the propagation of AD-related pathology and may facilitate the preservation of memory performance despite pathology. Using [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure catecholamine synthesis capacity in LC regions of interest, we examined relationships among LC neurochemical function, AD-related pathology, and memory performance in cognitively normal older adults (n = 49). Participants underwent [11C]Pittsburgh compound B and [18F]Flortaucipir PET to quantify β-amyloid (n = 49) and tau burden (n = 42) respectively. In individuals with substantial β-amyloid, higher LC [18F]FMT net tracer influx (Kivis) was associated with lower temporal tau. Longitudinal tau-PET analyses in a subset of our sample (n = 30) support these findings to reveal reduced temporal tau accumulation in the context of higher LC [18F]FMT Kivis. Higher LC catecholamine synthesis capacity was positively correlated with self-reported cognitive engagement and physical activity across the lifespan, established predictors of successful aging measured with the Lifetime Experiences Questionnaire. LC catecholamine synthesis capacity moderated tau's negative effect on memory, such that higher LC catecholamine synthesis capacity was associated with better-than-expected memory performance given an individual's tau burden. These PET findings provide insight into the neurochemical mechanisms of AD vulnerability and cognitive resilience in the living human brain. |
| 536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 0 |
| 542 | _ | _ | |i 2022-01-15 |2 Crossref |u https://www.springer.com/tdm |
| 542 | _ | _ | |i 2022-01-15 |2 Crossref |u https://www.springer.com/tdm |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a Amyloid beta-Peptides |2 NLM Chemicals |
| 650 | _ | 7 | |a Catecholamines |2 NLM Chemicals |
| 650 | _ | 7 | |a tau Proteins |2 NLM Chemicals |
| 650 | _ | 7 | |a Norepinephrine |0 X4W3ENH1CV |2 NLM Chemicals |
| 650 | _ | 2 | |a Aged |2 MeSH |
| 650 | _ | 2 | |a Aging: pathology |2 MeSH |
| 650 | _ | 2 | |a Alzheimer Disease: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Alzheimer Disease: pathology |2 MeSH |
| 650 | _ | 2 | |a Amyloid beta-Peptides: metabolism |2 MeSH |
| 650 | _ | 2 | |a Catecholamines |2 MeSH |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Locus Coeruleus: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Locus Coeruleus: metabolism |2 MeSH |
| 650 | _ | 2 | |a Norepinephrine |2 MeSH |
| 650 | _ | 2 | |a Positron-Emission Tomography: methods |2 MeSH |
| 650 | _ | 2 | |a tau Proteins: metabolism |2 MeSH |
| 700 | 1 | _ | |a Parent, Jourdan H |b 1 |
| 700 | 1 | _ | |a Harrison, Theresa M |b 2 |
| 700 | 1 | _ | |a Fain, Rebekah M |b 3 |
| 700 | 1 | _ | |a Betts, Matthew J |0 P:(DE-2719)2810555 |b 4 |u dzne |
| 700 | 1 | _ | |a Maaß, Anne |0 P:(DE-2719)2811815 |b 5 |u dzne |
| 700 | 1 | _ | |a Winer, Joseph R |b 6 |
| 700 | 1 | _ | |a Baker, Suzanne L |b 7 |
| 700 | 1 | _ | |a Janabi, Mustafa |b 8 |
| 700 | 1 | _ | |a Furman, Daniella J |b 9 |
| 700 | 1 | _ | |a D'Esposito, Mark |0 0000-0002-3462-006X |b 10 |
| 700 | 1 | _ | |a Jagust, William J |0 0000-0002-4458-113X |b 11 |
| 700 | 1 | _ | |a Berry, Anne S |0 0000-0002-5086-3643 |b 12 |
| 773 | 1 | 8 | |a 10.1038/s41386-022-01269-6 |b Springer Science and Business Media LLC |d 2022-01-15 |n 5 |p 1106-1113 |3 journal-article |2 Crossref |t Neuropsychopharmacology |v 47 |y 2022 |x 0893-133X |
| 773 | _ | _ | |a 10.1038/s41386-022-01269-6 |g Vol. 47, no. 5, p. 1106 - 1113 |0 PERI:(DE-600)2008300-2 |n 5 |p 1106-1113 |t Neuropsychopharmacology |v 47 |y 2022 |x 0893-133X |
| 856 | 4 | _ | |u https://pub.dzne.de/record/163666/files/DZNE-2022-00412_Restricted.pdf |
| 856 | 4 | _ | |u https://pub.dzne.de/record/163666/files/DZNE-2022-00412_Restricted.pdf?subformat=pdfa |x pdfa |
| 909 | C | O | |p VDB |o oai:pub.dzne.de:163666 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)2810555 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2811815 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROPSYCHOPHARMACOL : 2021 |d 2023-04-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-04-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-04-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-04-25 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-04-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-04-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-04-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-04-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-04-25 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEUROPSYCHOPHARMACOL : 2021 |d 2023-04-25 |
| 920 | 1 | _ | |0 I:(DE-2719)5000006 |k AG Düzel |l Clinical Neurophysiology and Memory |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)1311001 |k AG Maaß |l Multimodal Neuroimaging |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-2719)5000006 |
| 980 | _ | _ | |a I:(DE-2719)1311001 |
| 980 | _ | _ | |a UNRESTRICTED |
| 999 | C | 5 | |a 10.3233/JAD-142682 |9 -- missing cx lookup -- |1 P Theofilas |p 17 - |2 Crossref |u Theofilas P, Dunlop S, Heinsen H, Grinberg LT. Turning on the light within: Subcortical nuclei of the isodentritic core and their role in Alzheimer’s disease pathogenesis. J Alzheimers Dis. 2015;46:17–34. |t J Alzheimers Dis. |v 46 |y 2015 |
| 999 | C | 5 | |a 10.1016/S0197-0186(02)00049-9 |9 -- missing cx lookup -- |1 DL Feinstein |p 357 - |2 Crossref |u Feinstein DL, Heneka MT, Gavrilyuk V, Russo CD, Weinberg G, Galea E. Noradrenergic regulation of inflammatory gene expression in brain. Neurochemistry Int. 2002;41:357–65. |t Neurochemistry Int. |v 41 |y 2002 |
| 999 | C | 5 | |a 10.1016/j.neuint.2007.06.035 |9 -- missing cx lookup -- |1 DM Jurič |p 297 - |2 Crossref |u Jurič DM, Lončar D, Čarman-Kržan M. Noradrenergic stimulation of BDNF synthesis in astrocytes: Mediation via α1- and β1/β2-adrenergic receptors. Neurochemistry Int. 2008;52:297–306. |t Neurochemistry Int. |v 52 |y 2008 |
| 999 | C | 5 | |a 10.1038/s41380-019-0437-x |9 -- missing cx lookup -- |1 HIL Jacobs |p 897 - |2 Crossref |u Jacobs HIL, Riphagen JM, Ramakers IHGB, Verhey FRJ. Alzheimer’s disease pathology: Pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms. Mol Psychiatry. 2021;26:897–906. |t Mol Psychiatry |v 26 |y 2021 |
| 999 | C | 5 | |a 10.1016/0006-3223(94)00259-6 |9 -- missing cx lookup -- |1 BA Lawlor |p 185 - |2 Crossref |u Lawlor BA, Bierer LM, Ryan TM, Schmeidler J, Knott PJ, Williams LL, et al. Plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) and clinical symptoms in Alzheimer’s disease. Biol Psychiatry. 1995;38:185–8. |t Biol Psychiatry |v 38 |y 1995 |
| 999 | C | 5 | |1 YI Sheline |y 1998 |2 Crossref |u Sheline YI, Miller K, Bardgett ME, Csernansky JG. Higher cerebrospinal fluid MHPG in subjects with dementia of the Alzheimer type. Relationship with cognitive dysfunction. Am J Geriatr Psychiatry. 1998;6:155–61. |
| 999 | C | 5 | |a 10.3233/JAD-201411 |9 -- missing cx lookup -- |1 JM Riphagen |p 521 - |2 Crossref |u Riphagen JM, van Egroo M, Jacobs HIL. Elevated norepinephrine metabolism gauges Alzheimer’s disease-related pathology and memory decline. J Alzheimers Dis. 2021;80:521–6. |t J Alzheimers Dis. |v 80 |y 2021 |
| 999 | C | 5 | |a 10.1172/JCI130513 |9 -- missing cx lookup -- |1 SS Kang |p 422 - |2 Crossref |u Kang SS, Liu X, Ahn EH, Xiang J, Manfredsson FP, Yang X, et al. Norepinephrine metabolite DOPEGAL activates AEP and pathological Tau aggregation in locus coeruleus. J Clin Invest. 2020;130:422–37. |t J Clin Invest. |v 130 |y 2020 |
| 999 | C | 5 | |a 10.1093/brain/awz193 |9 -- missing cx lookup -- |1 MJ Betts |p 2558 - |2 Crossref |u Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain. 2019;142:2558–71. |t Brain. |v 142 |y 2019 |
| 999 | C | 5 | |a 10.1016/j.neurobiolaging.2020.12.019 |9 -- missing cx lookup -- |1 SL Bachman |p 72 - |2 Crossref |u Bachman SL, Dahl MJ, Werkle-Bergner M, Düzel S, Forlim CG, Lindenberger U, et al. Locus coeruleus MRI contrast is associated with cortical thickness in older adults. Neurobiol Aging. 2021;100:72–82. |t Neurobiol Aging. |v 100 |y 2021 |
| 999 | C | 5 | |a 10.1016/j.neurobiolaging.2015.09.019 |9 -- missing cx lookup -- |1 DV Clewett |p 117 - |2 Crossref |u Clewett DV, Lee T-H, Greening S, Ponzio A, Margalit E, Mather M. Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging. 2016;37:117–26. |t Neurobiol Aging. |v 37 |y 2016 |
| 999 | C | 5 | |a 10.1038/s41467-020-15410-w |1 KY Liu |9 -- missing cx lookup -- |2 Crossref |u Liu KY, Kievit RA, Tsvetanov KA, Betts MJ, Düzel E, Rowe JB, et al. Noradrenergic-dependent functions are associated with age-related locus coeruleus signal intensity differences. Nat Commun. 2020;11:1712. |t Nat Commun. |v 11 |y 2020 |
| 999 | C | 5 | |a 10.1016/j.dadm.2019.02.001 |9 -- missing cx lookup -- |1 MJ Betts |p 281 - |2 Crossref |u Betts MJ, Cardenas-Blanco A, Kanowski M, Spottke A, Teipel SJ, Kilimann I, et al. Locus coeruleus MRI contrast is reduced in Alzheimer’s disease dementia and correlates with CSF Aβ levels. Alzheimers Dement (Amst). 2019;11:281–5. |t Alzheimers Dement (Amst) |v 11 |y 2019 |
| 999 | C | 5 | |a 10.1126/scitranslmed.abj2511 |9 -- missing cx lookup -- |1 HIL Jacobs |p eabj2511 - |2 Crossref |u Jacobs HIL, Becker JA, Kwong K, Engels-Domínguez N, Prokopiou PC, Papp KV, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci Transl Med. 2021;13:eabj2511. |t Sci Transl Med. |v 13 |y 2021 |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1002/alz.047676 |2 Crossref |u Dahl MJ, Mather M, Werkle-Bergner M, Kennedy BL, Qiao Y, Shi Y, et al. Lower MR-indexed locus coeruleus integrity in autosomal-dominant Alzheimer’s disease is related to cortical tau burden and memory deficits. MedRxiv. 2020:2020.11.16.20232561. |
| 999 | C | 5 | |a 10.1038/nrn2573 |9 -- missing cx lookup -- |1 SJ Sara |p 211 - |2 Crossref |u Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23. |t Nat Rev Neurosci. |v 10 |y 2009 |
| 999 | C | 5 | |a 10.1016/j.tics.2016.01.001 |9 -- missing cx lookup -- |1 M Mather |p 214 - |2 Crossref |u Mather M, Harley CW. The Locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends Cogn Sci (Regul Ed). 2016;20:214–26. |t Trends Cogn Sci (Regul Ed) |v 20 |y 2016 |
| 999 | C | 5 | |a 10.1038/s41562-019-0715-2 |9 -- missing cx lookup -- |1 MJ Dahl |p 1203 - |2 Crossref |u Dahl MJ, Mather M, Düzel S, Bodammer NC, Lindenberger U, Kühn S, et al. Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat Hum Behav. 2019;3:1203–14. |t Nat Hum Behav. |v 3 |y 2019 |
| 999 | C | 5 | |a 10.1073/pnas.1712268115 |9 -- missing cx lookup -- |1 D Hämmerer |p 2228 - |2 Crossref |u Hämmerer D, Callaghan MF, Hopkins A, Kosciessa J, Betts M, Cardenas-Blanco A, et al. Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proc Natl Acad Sci USA. 2018;115:2228–33. |t Proc Natl Acad Sci USA |v 115 |y 2018 |
| 999 | C | 5 | |a 10.1016/j.neurobiolaging.2019.11.016 |9 -- missing cx lookup -- |1 J Langley |p 89 - |2 Crossref |u Langley J, Hussain S, Flores JJ, Bennett IJ, Hu X. Characterization of age-related microstructural changes in locus coeruleus and substantia nigra pars compacta. Neurobiol Aging. 2020;87:89–97. |t Neurobiol Aging. |v 87 |y 2020 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.1483-17.2017 |9 -- missing cx lookup -- |1 T Chalermpalanupap |p 74 - |2 Crossref |u Chalermpalanupap T, Schroeder JP, Rorabaugh JM, Liles LC, Lah JJ, Levey AI, et al. Locus coeruleus ablation exacerbates cognitive deficits, neuropathology, and lethality in P301S tau transgenic mice. J Neurosci. 2018;38:74–92. |t J Neurosci. |v 38 |y 2018 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.4236-05.2006 |9 -- missing cx lookup -- |1 MT Heneka |p 1343 - |2 Crossref |u Heneka MT, Ramanathan M, Jacobs AH, Dumitrescu-Ozimek L, Bilkei-Gorzo A, Debeir T, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci. 2006;26:1343–54. |t J Neurosci. |v 26 |y 2006 |
| 999 | C | 5 | |a 10.1016/j.jalz.2018.07.219 |9 -- missing cx lookup -- |1 Y Stern |p 1305 - |2 Crossref |u Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16:1305–11. |t Alzheimers Dement. |v 16 |y 2020 |
| 999 | C | 5 | |a 10.1212/WNL.0000000000005303 |9 -- missing cx lookup -- |1 EM Arenaza-Urquijo |p 695 - |2 Crossref |u Arenaza-Urquijo EM, Vemuri P. Resistance vs resilience to Alzheimer disease. Neurology. 2018;90:695–703. |t Neurology. |v 90 |y 2018 |
| 999 | C | 5 | |a 10.1016/j.neurobiolaging.2012.05.019 |9 -- missing cx lookup -- |1 IH Robertson |p 298 - |2 Crossref |u Robertson IH. A noradrenergic theory of cognitive reserve: Implications for Alzheimer’s disease. Neurobiol Aging. 2013;34:298–308. |t Neurobiol Aging |v 34 |y 2013 |
| 999 | C | 5 | |a 10.1212/WNL.0b013e31829c5e8a |9 -- missing cx lookup -- |1 RS Wilson |p 314 - |2 Crossref |u Wilson RS, Boyle PA, Yu L, Barnes LL, Schneider JA, Bennett DA. Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology. 2013;81:314–21. |t Neurology. |v 81 |y 2013 |
| 999 | C | 5 | |a 10.1073/pnas.1616515114 |9 -- missing cx lookup -- |1 KA Kempadoo |p 14835 - |2 Crossref |u Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. PNAS. 2016;113:14835–40. |t PNAS. |v 113 |y 2016 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.0626-16.2016 |9 -- missing cx lookup -- |1 AS Berry |p 12559 - |2 Crossref |u Berry AS, Shah VD, Baker SL, Vogel JW, O’Neil JP, Janabi M, et al. Aging affects dopaminergic neural mechanisms of cognitive flexibility. J Neurosci. 2016;36:12559–69. |t J Neurosci. |v 36 |y 2016 |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.apradiso.2004.04.008 |2 Crossref |u VanBrocklin HF, Blagoev M, Hoepping A, O’Neil JP, Klose M, Schubiger PA, et al. A new precursor for the preparation of 6-[18F]-fluoro-L-m-tyrosine (FMT): Efficient synthesis and comparison of radiolabeling. Appl Radiat Isotopes. 2004;61:1289–94. |
| 999 | C | 5 | |a 10.1038/npp.2017.180 |9 -- missing cx lookup -- |1 AS Berry |p 1201 - |2 Crossref |u Berry AS, Shah VD, Furman DJ, White RL, Baker SL, O’Neil JP, et al. Dopamine synthesis capacity is associated with D2/3 receptor binding but not dopamine release. Neuropsychopharmacology. 2018;43:1201–11. |t Neuropsychopharmacology. |v 43 |y 2018 |
| 999 | C | 5 | |a 10.1038/jcbfm.1985.87 |9 -- missing cx lookup -- |1 CS Patlak |p 584 - |2 Crossref |u Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90. |t J Cereb Blood Flow Metab. |v 5 |y 1985 |
| 999 | C | 5 | |a 10.1097/01.mnm.0000230069.08576.6d |9 -- missing cx lookup -- |1 H Ito |p 723 - |2 Crossref |u Ito H, Ota M, Ikoma Y, Seki C, Yasuno F, Takano A. et al. Quantitative analysis of dopamine synthesis in human brain using positron emission tomography with L-[beta-11C]DOPA. Nucl Med Commun. 2006;27:723–31. |t Nucl Med Commun |v 27 |y 2006 |
| 999 | C | 5 | |a 10.1016/j.neuroimage.2009.06.012 |9 -- missing cx lookup -- |1 NI Keren |p 1261 - |2 Crossref |u Keren NI, Lozar CT, Harris KC, Morgan PS, Eckert MA. In vivo mapping of the human locus coeruleus. NeuroImage. 2009;47:1261–7. |t NeuroImage. |v 47 |y 2009 |
| 999 | C | 5 | |a 10.1016/j.neuroimage.2017.09.042 |9 -- missing cx lookup -- |1 MJ Betts |p 150 - |2 Crossref |u Betts MJ, Cardenas-Blanco A, Kanowski M, Jessen F, Düzel E. In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage. 2017;163:150–9. |t Neuroimage. |v 163 |y 2017 |
| 999 | C | 5 | |a 10.1007/s00429-017-1464-5 |9 -- missing cx lookup -- |1 K-D Tona |p 4203 - |2 Crossref |u Tona K-D, Keuken MC, de Rover M, Lakke E, Forstmann BU, Nieuwenhuis S, et al. In vivo visualization of the locus coeruleus in humans: quantifying the test-retest reliability. Brain Struct Funct. 2017;222:4203–17. |t Brain Struct Funct. |v 222 |y 2017 |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1101/2020.02.03.932087 |2 Crossref |u Ye R, Rua C, O’Callaghan C, Jones PS, Hezemans F, Kaalund SS, et al. An in vivo probabilistic atlas of the human Locus coeruleus at ultra-high field. BioRxiv. 2020:2020.02.03.932087. |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1093/brain/awab236 |2 Crossref |u Doppler CEJ, Kinnerup MB, Brune C, Farrher E, Betts M, Fedorova TD, et al. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease. Brain. 2021:awab236. |
| 999 | C | 5 | |a 10.1093/brain/awx348 |9 -- missing cx lookup -- |1 M Sommerauer |p 496 - |2 Crossref |u Sommerauer M, Fedorova TD, Hansen AK, Knudsen K, Otto M, Jeppesen J, et al. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 2018;141:496–504. |t Brain |v 141 |y 2018 |
| 999 | C | 5 | |a 10.1016/j.nbd.2007.09.004 |9 -- missing cx lookup -- |1 RY Moore |p 381 - |2 Crossref |u Moore RY, Whone AL, Brooks DJ. Extrastriatal monoamine neuron function in Parkinson’s disease: An 18F-dopa PET study. Neurobiol Dis. 2008;29:381–90. |t Neurobiol Dis. |v 29 |y 2008 |
| 999 | C | 5 | |a 10.1016/j.neuroimage.2011.03.012 |9 -- missing cx lookup -- |1 N Pavese |p 1463 - |2 Crossref |u Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. Neuroimage. 2011;56:1463–8. |t Neuroimage. |v 56 |y 2011 |
| 999 | C | 5 | |a 10.1093/brain/awh445 |9 -- missing cx lookup -- |1 P Remy |p 1314 - |2 Crossref |u Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005;128:1314–22. |t Brain. |v 128 |y 2005 |
| 999 | C | 5 | |a 10.1002/syn.20696 |9 -- missing cx lookup -- |1 Y-S Ding |p 30 - |2 Crossref |u Ding Y-S, Singhal T, Planeta-Wilson B, Gallezot J-D, Nabulsi N, Labaree D, et al. PET imaging of the effects of age and cocaine on the norepinephrine transporter in the human brain using (S,S)-[11C]O-Methylreboxetine and HRRT. Synapse 2010;64:30–8. |t Synapse |v 64 |y 2010 |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1155/2016/5430920 |2 Crossref |u Ono SA, Sato T, Muramatsu S. Freezing of gait in Parkinson’s disease is associated with reduced 6-[18F]Fluoro-l-m-tyrosine uptake in the locus coeruleus. Parkinsons Dis. 2016;2016:5430920. |
| 999 | C | 5 | |a 10.1007/s12149-018-1305-5 |9 -- missing cx lookup -- |1 J Brumberg |p 69 - |2 Crossref |u Brumberg J, Tran-Gia J, Lapa C, Isaias IU, Samnick S. PET imaging of noradrenaline transporters in Parkinson’s disease: Focus on scan time. Ann Nucl Med. 2019;33:69–77. |t Ann Nucl Med. |v 33 |y 2019 |
| 999 | C | 5 | |a 10.1006/nimg.1999.0513 |9 -- missing cx lookup -- |1 JT Coull |p 705 - |2 Crossref |u Coull JT, Büchel C, Friston KJ, Frith CD. Noradrenergically mediated plasticity in a human attentional neuronal network. NeuroImage. 1999;10:705–15. |t NeuroImage. |v 10 |y 1999 |
| 999 | C | 5 | |a 10.1016/j.neuroimage.2008.03.009 |9 -- missing cx lookup -- |1 J Labus |p 1032 - |2 Crossref |u Labus J, Naliboff B, Fallon J, Berman S, Suyenobu B, Bueller J, et al. Sex differences in brain activity during aversive visceral stimulation and its expectation in patients with chronic abdominal pain: A network analysis. Neuroimage. 2008;41:1032–43. |t Neuroimage. |v 41 |y 2008 |
| 999 | C | 5 | |a 10.1016/j.ynirp.2020.100002 |9 -- missing cx lookup -- |1 KY Liu |p 100002 - |2 Crossref |u Liu KY, Acosta-Cabronero J, Hong YT, Yi Y-J, Hämmerer D, Howard R. FDG-PET assessment of the locus coeruleus in Alzheimer’s disease. Neuroimage: Rep. 2021;1:100002. |t Neuroimage: Rep |v 1 |y 2021 |
| 999 | C | 5 | |a 10.1016/j.neuron.2016.01.028 |9 -- missing cx lookup -- |1 M Schöll |p 971 - |2 Crossref |u Schöll M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET Imaging of Tau deposition in the aging human brain. Neuron. 2016;89:971–82. |t Neuron. |v 89 |y 2016 |
| 999 | C | 5 | |a 10.1038/sj.jcbfm.9600146 |9 -- missing cx lookup -- |1 JC Price |p 1528 - |2 Crossref |u Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47. |t J Cereb Blood Flow Metab. |v 25 |y 2005 |
| 999 | C | 5 | |a 10.1093/brain/awv112 |9 -- missing cx lookup -- |1 S Villeneuve |p 2020 - |2 Crossref |u Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM, et al. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain. 2015;138:2020–33. |t Brain. |v 138 |y 2015 |
| 999 | C | 5 | |a 10.1016/j.neuroimage.2011.07.098 |9 -- missing cx lookup -- |1 EC Mormino |p 1152 - |2 Crossref |u Mormino EC, Brandel MG, Madison CM, Rabinovici GD, Marks S, Baker SL, et al. Not quite PIB-positive, not quite PIB-negative: Slight PIB elevations in elderly normal control subjects are biologically relevant. Neuroimage. 2012;59:1152–60. |t Neuroimage. |v 59 |y 2012 |
| 999 | C | 5 | |a 10.1016/j.dib.2017.10.024 |9 -- missing cx lookup -- |1 SL Baker |p 648 - |2 Crossref |u Baker SL, Maass A, Jagust WJ. Considerations and code for partial volume correcting [18F]-AV-1451 tau PET data. Data Brief. 2017;15:648–57. |t Data Brief. |v 15 |y 2017 |
| 999 | C | 5 | |a 10.1016/j.jalz.2016.08.005 |9 -- missing cx lookup -- |1 CR Jack |p 205 - |2 Crossref |u Jack CR, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017;13:205–16. |t Alzheimers Dement. |v 13 |y 2017 |
| 999 | C | 5 | |a 10.1002/ana.25406 |9 -- missing cx lookup -- |1 TM Harrison |p 229 - |2 Crossref |u Harrison TM, La Joie R, Maass A, Baker SL, Swinnerton K, Fenton L, et al. Longitudinal tau accumulation and atrophy in aging and alzheimer disease. Ann Neurol. 2019;85:229–40. |t Ann Neurol. |v 85 |y 2019 |
| 999 | C | 5 | |a 10.1016/j.acn.2006.06.002 |9 -- missing cx lookup -- |1 SP Woods |p 413 - |2 Crossref |u Woods SP, Delis DC, Scott JC, Kramer JH, Holdnack JA. The California verbal learning test—second edition: Test-retest reliability, practice effects, and reliable change indices for the standard and alternate forms. Arch Clin Neuropsychol. 2006;21:413–20. |t Arch Clin Neuropsychol. |v 21 |y 2006 |
| 999 | C | 5 | |a 10.1017/S003329170600938X |9 -- missing cx lookup -- |1 MJ Valenzuela |p 1015 - |2 Crossref |u Valenzuela MJ, Sachdev P. Assessment of complex mental activity across the lifespan: development of the Lifetime of Experiences Questionnaire (LEQ). Psychol Med. 2007;37:1015–25. |t Psychol Med. |v 37 |y 2007 |
| 999 | C | 5 | |a 10.1097/NEN.0b013e318232a379 |9 -- missing cx lookup -- |1 H Braak |p 960 - |2 Crossref |u Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011;70:960–9. |t J Neuropathol Exp Neurol |v 70 |y 2011 |
| 999 | C | 5 | |a 10.1007/BF00310132 |9 -- missing cx lookup -- |1 RW Shin |p 517 - |2 Crossref |u Shin RW, Kitamoto T, Tateishi J. Modified tau is present in younger nondemented persons: A study of subcortical nuclei in Alzheimer’s disease and progressive supranuclear palsy. Acta Neuropathol. 1991;81:517–23. |t Acta Neuropathol. |v 81 |y 1991 |
| 999 | C | 5 | |a 10.3389/fpsyg.2012.00023 |9 -- missing cx lookup -- |1 CR Pernet |p 606 - |2 Crossref |u Pernet CR, Wilcox R, Rousselet GA. Robust correlation analyses: False positive and power validation using a new open source matlab toolbox. Front Psychol. 2012;3:606. |t Front Psychol. |v 3 |y 2012 |
| 999 | C | 5 | |2 Crossref |u Hayes AF. Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Gilford press; 2013. |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.2028-17.2017 |9 -- missing cx lookup -- |1 A Maass |p 530 - |2 Crossref |u Maass A, Lockhart SN, Harrison TM, Bell RK, Mellinger T, Swinnerton K, et al. Entorhinal Tau pathology, episodic memory decline, and neurodegeneration in aging. J Neurosci 2018;38:530–43. |t J Neurosci |v 38 |y 2018 |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1093/cercor/bhab379 |2 Crossref |u Ciampa CJ, Parent JH, Lapoint MR, Swinnerton KN, Taylor MM, Tennant VR, et al. Elevated dopamine synthesis as a mechanism of cognitive resilience in aging. Cereb Cortex. 2021:bhab379. |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.1007/s00401-020-02248-1 |2 Crossref |u Matchett BJ, Grinberg LT, Theofilas P, Murray ME. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2021. 11 January 2021. https://doi.org/10.1007/s00401-020-02248-1. |
| 999 | C | 5 | |a 10.1002/ana.410150609 |9 -- missing cx lookup -- |1 SI Harik |p 568 - |2 Crossref |u Harik SI, McGunigal T. The protective influence of the locus ceruleus on the blood-brain barrier. Ann Neurol. 1984;15:568–74. |t Ann Neurol |v 15 |y 1984 |
| 999 | C | 5 | |a 10.1152/jn.00226.2004 |9 -- missing cx lookup -- |1 M Ouyang |p 2071 - |2 Crossref |u Ouyang M, Hellman K, Abel T, Thomas SA. Adrenergic signaling plays a critical role in the maintenance of waking and in the regulation of REM sleep. J Neurophysiol. 2004;92:2071–82. |t J Neurophysiol. |v 92 |y 2004 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.2985-10.2010 |9 -- missing cx lookup -- |1 Y Kong |p 11848 - |2 Crossref |u Kong Y, Ruan L, Qian L, Liu X, Le Y. Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci. 2010;30:11848–57. |t J Neurosci. |v 30 |y 2010 |
| 999 | C | 5 | |a 10.1046/j.1471-4159.2001.00556.x |9 -- missing cx lookup -- |1 JD Troadec |p 200 - |2 Crossref |u Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, et al. Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem. 2001;79:200–10. |t J Neurochem. |v 79 |y 2001 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.4926-08.2009 |9 -- missing cx lookup -- |1 JLM Madrigal |p 263 - |2 Crossref |u Madrigal JLM, Leza JC, Polak P, Kalinin S, Feinstein DL. Astrocyte-derived MCP-1 mediates neuroprotective effects of noradrenaline. J Neurosci. 2009;29:263–7. |t J Neurosci. |v 29 |y 2009 |
| 999 | C | 5 | |a 10.1002/1531-8249(199901)45:1<82::AID-ART14>3.0.CO;2-T |9 -- missing cx lookup -- |1 WJG Hoogendijk |p 82 - |2 Crossref |u Hoogendijk WJG, Feenstra MGP, Botterblom MHA, Gilhuis J, Sommer IEC, Kamphorst W, et al. Increased activity of surviving locus ceruleus neurons in Alzheimer’s disease. Ann Neurol. 1999;45:82–91. |t Ann Neurol |v 45 |y 1999 |
| 999 | C | 5 | |2 Crossref |u Jh F, Da K, Ry M. Catecholamine Innervation of the Basal Forebrain. II. Amygdala, Suprarhinal Cortex and Entorhinal Cortex. J Comparative Neurol. 1978. http://pubmed.ncbi.nlm.nih.gov/659673/. Accessed 10 June 2020. |
| 999 | C | 5 | |a 10.1155/2017/2727602 |9 -- missing cx lookup -- |1 N Hansen |p 2727602 - |2 Crossref |u Hansen N. The longevity of Hippocampus-dependent memory is orchestrated by the Locus Coeruleus-noradrenergic system. Neural Plast. 2017;2017:2727602. |t Neural Plast. |v 2017 |y 2017 |
| 999 | C | 5 | |a 10.1016/j.biopsych.2012.06.013 |9 -- missing cx lookup -- |1 T Hammerschmidt |p 454 - |2 Crossref |u Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape H-C, et al. Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry. 2013;73:454–63. |t Biol Psychiatry |v 73 |y 2013 |
| 999 | C | 5 | |a 10.1016/S0006-8993(01)03257-7 |9 -- missing cx lookup -- |1 F Naka |p 124 - |2 Crossref |u Naka F, Shiga T, Yaguchi M, Okado N. An enriched environment increases noradrenaline concentration in the mouse brain. Brain Res. 2002;924:124–6. |t Brain Res. |v 924 |y 2002 |
| 999 | C | 5 | |a 10.1111/j.1471-4159.2009.06265.x |9 -- missing cx lookup -- |1 M Grilli |p 1598 - |2 Crossref |u Grilli M, Zappettini S, Zanardi A, Lagomarsino F, Pittaluga A, Zoli M, et al. Exposure to an enriched environment selectively increases the functional response of the pre-synaptic NMDA receptors which modulate noradrenaline release in mouse hippocampus. J Neurochem. 2009;110:1598–606. |t J Neurochem. |v 110 |y 2009 |
| 999 | C | 5 | |a 10.1016/S0272-7358(99)00032-X |9 -- missing cx lookup -- |1 P Salmon |p 33 - |2 Crossref |u Salmon P. Effects of physical exercise on anxiety, depression, and sensitivity to stress: A unifying theory. Clin Psychol Rev. 2001;21:33–61. |t Clin Psychol Rev. |v 21 |y 2001 |
| 999 | C | 5 | |2 Crossref |u Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, et al. International consensus based review and recommendations for minimum reporting standards in research on transcutaneous Vagus Nerve Stimulation (Version 2020). Front Hum Neurosci. 2020;14:409. |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.1361-20.2020 |9 -- missing cx lookup -- |1 O Sharon |p 320 - |2 Crossref |u Sharon O, Fahoum F, Nir Y. Transcutaneous vagus nerve stimulation in humans induces pupil dilation and attenuates alpha oscillations. J Neurosci. 2021;41:320–30. |t J Neurosci. |v 41 |y 2021 |
| 999 | C | 5 | |9 -- missing cx lookup -- |a 10.3389/fpsyt.2018.00201 |2 Crossref |u Chang C-H, Lane H-Y, Lin C-H. Brain stimulation in Alzheimer’s disease. Front Psychiatry. 2018;9:201. |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|